Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:8
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 4 od 26  
Back povratak na rezultate
2020, vol. 70, br. 3, str. 35-40
Difrencijalno skenirajuća kalorimetrija i test vakuum stabilnosti kao metode za određivanje kompatibilnosti eksploziva
Vojnotehnički institut - VTI, Beograd

e-adresab.fidanovski@gmail.com
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Vojnotehnički institut - VTI, Beograd) (MPNTR - 451-03-68/2020-14/200325)

Ključne reči: energetski materijali; eksplozivi; polimeri; kompatibilnost; diferencijalnoskenirajuća kalorimetrija; test vakuum stabilnosti
Sažetak
Tokom proizvodnje, skladištenja i upotrebe eksplozivnih materija izuzetno je važno uočiti i pravovremeno spreciti potencijalni rizik. Jedna od takvih potencijalnih opasnosti može biti izazvana prilikom kontakta eksplozivnih materija sa neeksplozivnim materijalima. Iz tog razloga različite analitičke i instrumentalne metode su razvijane i implementirane u okviru studije koja se bavi hemijskom kompatibilnosti eksploziva sa drugim materijalima. U ovom radu su prikazani rezultati ispitivanja kompatibilnosti korišćenjem dve metode: termalna metoda-diferencijalna skenirajuća kalorimetrija (DSC) i test vakuum stabilnosti (TVS). Ispitivane su eksplozivne materije kojesu cesto u upotrebi: Oktogen (HMX), Pentrit (PETN) i Amonijum perhlorat (AP) sa polimernim materijalima: Poliamid 12 (PA 12), Hidroksiterminirani polibutadijen (HTPB), Fluoroelastomer (Viton A). Provera kompatibilnosti je vršena korišćenjem kriterijuma kompatibilnosti definisanog u standardu STANAG 4147.
Reference
*** (2010) STABIL, Modernized Vacuum Stability Tester, User's Manual. OZM Research s.r.o, December 8
*** (2001) STANAG 4147 (Edition 2), Chemical Compatibility o f Ammunition Components with Explosives (Non-Nuclear Application). June
*** (1999) STANAG 4556: Explosives: Vacuum Stability Brussels (test 1, procedure B): North Atlantic Treaty Organization. Military Agency for Standardization
Agrawal, J.P. (2010) High energy materials: propellants, explosives and pyrotechnics. WILEY-VCH Verlag GmbH & Co. KGaA, ISBN: 978-3-527-32610-5
Akhavan, J. (2004) The Chemistry of Explosives. UK: The royal society of chemistry, Second Edition, RSC Paperbacks, ISBN 978-0-85404-640-9
Boldyrev, V.V. (2006) Thermal decomposition o f ammonium perchlorate. Thremochemica Acta, 443: 1-36
Chovancovâ, M., Zeman, S. (2007) Study o f initiation reactivity o f some plastic explosives by vacuum stability test and non-isothermal differential thermal analysis. Thermochimica Acta, 460: 67-76
Dimić, M., Fidanovski, B., Jelisavac, L.J., Stoiljković, S., Karišik, N. (2016) Determination o f compatibility o f double base propellant with polymer materials using different test methods. u: 7th International scientific conference on defensive technologies OTEH 2016, Belgrade, 6-7 October 2016, 276-281
Dimić, M., Fidanovski, B., Jelisavac, L., Rodić, V. (2017) Analysis of the of propellants-polymers compatibility by different test methods. Scientific Technical Review, vol. 67, br. 2, str. 13-19
Dolgoborodov, S.A.A., Yu, A., Brazhnikov, M.A., Kirilenko, V.G. (2018) Pseudoideal detonation o f mechanoactivated mixtures o f ammonium perchlorate with nanoaluminum. Journal of Physics: Conference Series, 946: 012055
Fidanovski, B., Dimić, M., Terzić, S., Karišik, N., Bajramovic, D. (2018) Compatibility o f explosives by thermal method and vacuum stability tes. u: 8th International scientific conference on defensive technologies OTEH 2018, Belgrade, 11-12 October 2018, 172-176
Fidanovski, B., Dimić, M., Simić, D., Terzić, S. (2020) Differential scanning calorimetry in the field o f explosives materials. u: 9th International scientific conference on defensive technologies OTEH 2020, Belgrade, 15-16 October 2020
Haines, P.J. (2012) Thermal Methods of Analysis: Principles, Applications and Problems. Springer Science & Business, ISBN 9401113246, 9789401113243
Hu, R.Z., Shi, Q.Z. (2001) Thermal Analyses and kinetics. Beijing, China: Science Press
Mark, J.E. (1999) Polymer Data Handbook. UK: Oxford University Press, Inc, ISBN 978-0195181012
Mazzeu, M.A.C., Mattos, E.C., Iha, K. (2010) Studies on compatibility o f energetic materials by thermal methods. Journal of Aerospace Technology and anagement, 2(1), jan.-apr
Meyer, R., Kohler, J., Homburg, A. (2002) Explosives. Wiley-Vch, Fifth Edition
Silva, G., i dr. (2003) Estudo cinético da térmica do aHMX rog calorimetria exploratoria diferencial. Anais da Associaçâo Brasileira de Quimica, 1(2): 10-12
Vogelsanger, B. (2004) Chemical Stability, Compatibility and Shelf Life o f Explosives. Chimia, 58(6): 401-408
Vyazovkin, S., Wight, C.A. (1999) Kinetics o f thermal decomposition o f cubic ammonium perchlorate. Chemistry of Materials, 11: 3386-3393
Zeman, S., Gazda, S., Stolcova, A., Dimun, A. (1994) Dependence on temperature of the results of the vacuum stability test for explosives. Thermochim Acta, 247: 447-54
Zhu, Y.-.L., Huang, H., Ren, H., Jiao, Q.-.J. (2014) Kinetics o f Thermal Decomposition o f Ammonium Perchlorate by TG/DSC-MS-FTIR. Joumal of Energetic Materials, 32(1): 16-26
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/str2003035F
primljen: 10.02.2021.
prihvaćen: 17.03.2021.
objavljen u SCIndeksu: 09.04.2021.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka