Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[6]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:49
  • preuzimanja u poslednjih 30 dana:36

Sadržaj

članak: 8 od 25  
Back povratak na rezultate
2014, vol. 55, br. 4, str. 395-400
Princip superponiranja vremena i temperature - primena WLF jednačine za ispitivanje polimera i kompozita
aDepartment of Chemical Engineering, McMaster University, Hamilton, ON, Canada
bCollege of Vocational Studies Belgrade Polytechnic, Belgrade
cUniverzitet u Beogradu, Tehnički fakultet u Boru
dUniverzitet u Beogradu, Tehnološko-metalurški fakultet
Ključne reči: TTS princip; WLF jednačina; primena; polimeri; kompoziti; karakterisanje
Sažetak
Polimeri su najproučavaniji viskoelastični materijali. Kraće vreme (odnosno visoke frekvencije) odgovaraju nižim temperaturama, a duže vreme (odnosno niske frekvencije) odgovaraju visokim temperaturama. Ovaj odnos vremena (frekvencije) i temperature predstavlja kvantitativnu primenu principa superponiranja vremena i temperature (TTS). Upotreba Viliams-Lendl-Feri (Williams- Landel-Ferry, WLF) jednačine i principa superponirnaja vremena i temperature omogućava predviđanje i modelovanje mehaničkih i reoloških svojstava polimernih sistema izvan vremenske skale eksperimenta. Upotreba i validnost TTS i WLF jednačine na polimerne blende, kompozite, biopolimere i polimerne mreže biće predstavljeni i razmatrani u ovom radu.
Reference
Ahmed, J., Auras, R., Kijchavengkul, T., Varshney, S.K. (2012) Rheological, thermal and structural behavior of poly(ε-caprolactone) and nanoclay blended films. Journal of Food Engineering, 111(4): 580-589
Ahmed, J. (2012) Applicability of time-temperature superposition principle: Dynamic rheology of mung bean starch blended with sodium chloride and sucrose - Part 2. Journal of Food Engineering, 109(2): 329-335
Aklonis, J.J., Macknight, W.J. (1983) Introduction to polymer viscoelasticity. Wiley
Alwis, K.G.N.C., Burgoyne, C.J. (2006) Time-Temperature Superposition to Determine the Stress-Rupture of Aramid Fibres. Applied Composite Materials, 13(4): 249-264
Bower, D.I. (2002) An Introduction to Polymer Physics. Cambridge University Press
Capodagli, J., Lakes, R. (2008) Isothermal viscoelastic properties of PMMA and LDPE over 11 decades of frequency and time: a test of time-temperature superposition. Rheologica Acta, 47(7): 777-786
Colby, R. (1989) Breakdown of time-temperature superposition in miscible polymer blends. Polymer, 30(7): 1275-1278
Corcione, C.E., Greco, A., Maffezzoli, A. (2005) Time-temperature and time-irradiation intensity superposition for photopolymerization of an epoxy based resin. Polymer, 46(19): 8018-8027
Ferry, J.D. (1980) Viscoelastic properties of polymers. New York, itd: Wiley
Guedes, R.M. (2011) A viscoelastic model for a biomedical ultra-high molecular weight polyethylene using the time-temperature superposition principle. Polymer Testing, 30(3): 294-302
Hagen, R., Weiss, R.A. (1995) Assessment of time-temperature superposition of linear viscoelastic behaviour of strongly interacting polymer blends: N-methylated nylon-2,10 and lightly sulfonated polystyrene ionomers. Polymer, 36(24): 4657-4664
Han, C.D., Kim, J.K. (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer, 34(12): 2533-2539
Hartwig, G. (1994) Polymer Properties at Room and Cryogenic Temperatures. Springer
Heymans, N. (2003) Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition. Signal Processing, 83(11): 2345-2357
Hillman, A., Mohamoud, M.A., Efimov, I. (2011) Time-temperature superposition and the controlling role of solvation in the viscoelastic properties of polyaniline thin films. Analytical chemistry, 83(14): 5696-707
Lazaridou, A., Biliaderis, C.G. (2002) Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydrate Polymers, 48(2): 179
Leaderman, H. (1943) Elastic and creep properties of filamentous materials and other high polymers. Text Found
Li, R. (2000) Time-temperature superposition method for glass transition temperature of plastic materials. Materials Science and Engineering: A, 278(1-2): 36-45
Litt, M.H. (1976) Free Volume and Its Relationship to the Temperature Effect on Zero Shear Melt Viscosity: A New Correlation. Journal of Rheology, 20(1): 47
Luo, W.B., Wang, C.H., Zhao, R.G. (2007) Application of Time-Temperature-Stress Superposition Principle to Nonlinear Creep of Poly(methyl methacrylate). Key Engineering Materials, 340-341: 1091-1096
Mandelkern, L. (1993) The crystalline state. Washington, DC: ACS
Petrović, Z., Guo, A., Javni, I., i dr. (2008) Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polymer International, 57(2): 275
Razavi-Nouri, M., Hay, J.N. (2004) Time-temperature superposition and dynamic mechanical properties of metallocene polyethylenes. Iran Polym J, 13, 363-70
Reiner, M. (1964) The Deborah Number. Physics Today, 17(1): 62
Riande, E., Diaz-Calleja, R., Prolongo, M.G., Masegosa, R.M., Salom, C. (1999) Polymer viscoelasticity. CRC Press
Ronan, S., Alshuth, T., Jerrams, S., Murphy, N. (2007) Long-term stress relaxation prediction for elastomers using the time-temperature superposition method. Materials and Design, 28(5): 1513-1523
Rosen, S.L. (1993) Fundamental principles of polymeric materials. Wiley
Sperling, L.H. (2005) Introduction to Physical Polymer Science. Wiley
Stadler, F.J., Kaschta, J., Münstedt, H. (2008) Thermorheological Behavior of Various Long-Chain Branched Polyethylenes. Macromolecules, 41(4): 1328-1333
Tobolsky, A.V., Andrews, R.D. (1945) Systems Manifesting Superposed Elastic and Viscous Behavior. Journal of Chemical Physics, 13(1): 3
Tobolsky, V. (196-) Properties and structure of polymers. New York, itd: Wiley
Vaidyanathan, T.K., Vaidyanathan, J., Cherian, Z. (2003) Extended creep behavior of dental composites using time-temperature superposition principle. Dental materials, 19(1): 46-53
van Gurp, M., Palmen, J. (1998) Time-temperature superposition for polymeric blends. Rheol Bull.
Velankar, S., Cooper, S.L. (2000) Microphase Separation and Rheological Properties of Polyurethane Melts. 1. Effect of Block Length. Macromolecules, 31, pp. 9181-92
Williams, M.L., Landel, R.F., Ferry, J.D. (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 77(14): 3701
Wood-Adams, P., Costeux, S. (2001) Thermorheological Behavior of Polyethylene:  Effects of Microstructure and Long Chain Branching. Macromolecules, 34(18): 6281-6290
Wortmann, F., Schulz, K. (1995) Stress relaxation and time/temperature superposition of polypropylene fibres. Polymer, 36(2): 315-321
Wortmann, F.-J., Schulz, K.V. (1995) Investigations on the thermorheological simplicity of polypropylene fibres in the α-transition range. Polymer, 36(8): 1611-1615
Yao, B., Cheng, G., Wang, X., Cheng, C., Liu, S. (2013) Linear viscoelastic behaviour of thermosetting epoxy asphalt concrete - Experiments and modeling. Construction and Building Materials, 48: 540-547
Yildiz, M.E., Kokini, J.L. (2001) Determination of Williams-Landel-Ferry constants for a food polymer system: Effect of water activity and moisture content. Journal of Rheology, 45(4): 903
Zhao, J., Knauss, W.G., Ravichandran, G. (2007) Applicability of the time-temperature superposition principle in modeling dynamic response of a polyurea. Mechanics of Time-Dependent Materials, 11(3-4): 289-308
Zlatanić, A., Petrović, Z.S., Dusek, K. (2002) Structure and properties of triolein-based polyurethane networks. Biomacromolecules, 3(5): 1048-56
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/ZasMat1404395L
objavljen u SCIndeksu: 13.05.2015.

Povezani članci

Nema povezanih članaka