- citati u SCIndeksu: [1]
- citati u CrossRef-u:[5]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:10
- preuzimanja u poslednjih 30 dana:4
|
|
2017, vol. 45, br. 1, str. 198-202
|
Predviđanje poslovnih rezultata primenom regresionih modela
Applying regression models to predict business results
aDunav osiguranje a.d.o, Belgrade bUniverzitet u Beogradu, Mašinski fakultet, Srbija
e-adresa: jrusov@gmail.com
Sažetak
Za savremenu poslovnu praksu rezultati predviđanja poslovanja su od suštinskog značaja za evaluaciju buduće finansijske efikasnosti preduzeća. Postupak planiranja i predviđanja naročito je značajan za preduzeća koja posluju u uslovima neizvesnosti. U radu je izložen primer planiranja i predviđanja poslovnih rezultata u osiguranju prilikom proračuna trenda premije linearnom i nelinearnom regresijom. Zbog neizvesnosti koja prati trenutak nastanka i iznosa štete neophodno je osigurati dovoljno sredstava za pokriće rizika. Za usklađivanje sredstava i obaveza potrebno je predvideti buduće kretanje premije po vrstama osiguranja, što čini osnovni koncept razvoja i poslovanja osiguravajućih društava.
Abstract
In terms of modern business practice, business prediction results are crucially important for evaluation of future financial performance of a company. Planning and prediction procedures are especially important for companies operating under uncertainty. This paper shows an example of planning and prediction of business results in insurance when calculating premium trend by use of linear and nonlinear regression. Due to the uncertainty associated with the moment of claim occurrence and claim amount, it is necessary to secure enough assets to cover the risks. Asset-liability matching requires the prediction of future premium movement per insurance lines which represents the basic concept of development and operation of insurance companies.
|
|
|
Reference
|
|
Christofides, S. (1990) Regression models based on log-incremental payments. u: Claims Reserving Manual, London: Institute of Actuaries, Vol. 2
|
|
Gediminaitė, I. (2009) On the prediction error in several claims reserves estimation methods. Stockholm: School of Engineering Sciences-Royal Institute of Technology, Master thesis
|
1
|
Mack, T., Venter, G. (2000) A comparison of stochastic models that reproduce chain ladder reserve estimates. Insurance: Mathematics and Economics, 26(1): 101-107
|
|
Maddala, G.S., Lahiri, K. (2010) Introduction to econometrics. New York: John Wiley and Sons, 4th Edition, ISBN: 978-0-470-01512-4
|
|
Mccullagh, P. (1980) Regression models for ordinal data. Journal of the Royal Statistical Society, Series B, Methodological, Vol. 42 (2), pp. 109-142
|
|
Milanović, D.Lj., Milanović, D.D., Misita, M. (2010) The evaluation of risky investment projects. FME Transactions, vol. 38, br. 2, str. 103-106
|
|
Pankratz, A. (1991) Forecasting with Dynamic Regression Models. Hoboken, NJ, USA: Wiley-Blackwell
|
|
Partachi, I., et al. (2010) Statistical methods of estimating loss reserves in general insurance. Scientific Annals of the Alexandru Ioan Cuza, University of Ias; Supplement, p. 357
|
|
Potockỳ, R., Stehlík, M. (2010) Nonlinear Regression Models with Applications in Insurance. Open Statistics & Probability Journal, 2(1): 9-14
|
1
|
Sánchez, J.de A. (2006) Calculating insurance claim reserves with fuzzy regression. Fuzzy Sets and Systems, 157(23): 3091-3108
|
1
|
Van, G.T., Martens, D., Baesens, B., Feremans, D., Huysmans, J., Vanthienen, J. (2007) Forecasting and analyzing insurance companies' ratings. International Journal of Forecasting, 23(3): 513-529
|
|
Wang, G., Chaman, J. (2003) Regression analysis: Modeling & forecasting. USA: Graceway publishing Company, ISBN 0-932126-50-2
|
|
Zhang, Y., Dukic, V. (2013) Predicting Multivariate Insurance Loss Payments under the Bayesian Copula Framework. Journal of Risk and Insurance, Vol. 80, No. 4
|
|
|
|