Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:36
  • preuzimanja u poslednjih 30 dana:19

Sadržaj

članak: 5 od 454  
Back povratak na rezultate
2022, vol. 28, br. 2, str. 52-60
Stabilnost prinosa zrna genotipova ozime pšenice
aCentar za strna žita, Kragujevac, Srbija
bUniverzitet u Nišu, Srbija
cInstitut za povrtarstvo, Smederevska Palanka, Srbija
dInstitut za krmno bilje, Kruševac, Srbija
eInstitute Tamiš, Pančevo

e-adresavperisic74@gmail.com
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Institut za povrtarstvo, Smederevska Palanka) (MPNTR - 451-03-68/2020-14/200216)

Ključne reči: adaptabilnost; interakcija genotip-sredina; pšenica; prinos; stabilnost
Sažetak
Hlebna pšenica je jedna od najzastupljenijih ratarskih vrsta, čiji je nivo i stabilnost prinosa veoma važan za prehrambenu sigurnost Republike Srbije. U radu je ispitivana stabilnost ekspresije prinosa zrna 15 genotipova ozime hlebne pšenice u različitim agroekološkim uslovima Srbije, korišćenjem AMMI modela i GGE-biplot analize. Cilj je bio da se utvrdi koja od primenjenih analiza je superiornija u identifikaciji najpoželjnijih genotipova za gajenje u datim sredinama. Analiza varijanse je pokazala da genotip i interakcija genotip-sredina (G×E) predstavljaju veoma značajan izvor varijabilnosti pri ekspresiji prinosa zrna. AMMI i GGE analize su dale slične rezultate, pa je nesporan zaključak da je neophodno višelokacijske oglede, pored analizom varijanse koja se najćešće rutinski koristi, analizirati i jednim od ova dva modela, koji kombinuju analizu varijanse i PCA analizu. AMMI analiza je jednostavnija za interpretaciju i bliža je agronomskom konceptu poimanja ogleda, dok je GGE analiza kompleksnija i jasnija za interpretaciju gde ko pobeđuje, odnosno za definisanje usko prilagođenih genotipova datim sredinama. Tako G11, kao genotip sa najvećim prosečnim prinosom je usko prilagođen lokaciji Sombor, pa se prevashodno može preporučiti toj lokaciji ali i lokaciji 2 (Kruševac), dok se genotipovi skromnijih zahteva (G2) pre mogu preporučiti za gajenje u lokaciji 1 (Kragujevac), koja se odlikuje lošijim zemljištem i manjom količinom i lošijim rasporedom padavina.
Reference
Arain, M.A., Sial, M.A., Rajput, M.A., Mirbahar, A.A. (2011) Yield stability in bread wheat genotypes. Pak . J . Bot, 43(4): 2071-2074
Calderini, D., Quintero, A., Hasan, A., Wingen, L., Griffiths, S., Girousse, C. (2013) Improving Grain Filling and Potential Grain Size. u: International Workshop of the Wheat Yield Consortium, Proceedings, 3, 39
Calderini, F.C., Slafer, G.A. (1998) Changes in yield and yield stability in wheat during the 20th century. Field Crops Research, 57(3): 335-347
Dimitrijević, M., Knežević, D., Petrović, S., Zečević, V., Bošković, J.Z., Belić, M., Pejić, B., Banjac, B. (2011) Stability of yield components in wheat (Triticum aestivum L.). Genetika, vol. 43, br. 1, str. 29-39
Gauch, H.G., Zobel, R.W. (1996) AMMI analysis of yield trials. u: Kang M.S., Gauch H.G. [ur.] Genotype by environment interaction, Boca Raton: CRC Press, 85-122
Gupta, V., Kumar, M., Singh, V., Chaudhary, L., Yashveer, S., Sheoran, R., Dalal, M.S., Nain, A., Lamba, K., Gangadharaiah, N., Sharma, R., Nagpal, S. (2022) Genotype by Environment Interaction Analysis for Grain Yield of Wheat (Triticum aestivum (L.) em.Thell) Genotypes. Agriculture, 12(7): 1002
Hagos, G.H., Abay, F. (2013) AMMI and GGE biplot analysis of bread wheat genotypes in the northern part of Ethiopia. Journal of Plant Breeding and Genetics, 12-18; 1
Hongyu, K., Garcıa-Pena, M., de Araujo, L., Dos, S.D.C. (2014) Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters, 51(2): 89-102
Hristov, N., Mladenov, N., Kondić-Špika, A. (2007) Environmental stability of physical traits of wheat grain. Zbornik radova Instituta za ratarstvo i povrtarstvo, vol. 43, br. 1, str. 29-37
Johnson, R., Bhattacharyya, G. (2010) Statistics: Principles and Methods. New Jersey, USA: John Wiley & Sons, 6th ed
Kaya, Y., Akcura, M. (2014) Effects of genotype and environment on grain yield and quality traits in bread wheat (T. aestivum L.). Food Science and Technology (Campinas), 34(2): 386-393
Liu, G., Zhao, Y., Mirdita, V., Reif, J.C. (2017) Efficient strategies to assess yield stability in winter wheat. Theoretical and Applied Genetics, 130(8): 1587-1599
Luković, K., Prodanović, S., Perišić, V., Milovanović, M., Perišić, V., Rajičić, V., Zečević, V. (2020) Multivariate analysis of morphological traits and the most important productive traits of wheat in extreme wet conditions. Applied Ecology and Environmental Research, 18(4): 5857
Ljubičić, N., Popović, V., Simić, D., Ivošević, B., Kostić, M., Rajičić, V., Pajić, M. (2022) Stabilnost indeksa klasa pšenice proizvedene na halomorfnom zemljištu. Selekcija i semenarstvo, vol. 28, br. 1, str. 1-8
Mirosavljević, M., Momčilović, V., Živančev, D., Aćin, V., Jocković, B., Mikić, S., Takač, V., Denčić, S. (2020) Genetic improvement of grain yield and bread-making quality of winter wheat over the past 90 years under the Pannonian Plain conditions. Euphytica, 216(12): 184
Mohamed, N., Said, A., Amein, K. (2013) Additive main effects and multiplicative interaction (AMMI) and GGE-biplot analysis of genotype × environment interactions for grain yield in bread wheat (Triticum aestivum L . ). African Journal of Agricultural Research, 8 (42): 5197-5203
Perišić, V. (2016) Variability of traits and stability of yield and yield components of winter wheat. Belgrade, Serbia: Faculty of Agriculture, University of Belgrade, PhD thesis
Purchase, J.L. (1997) Parametric analysis to describe G × E interaction and yield stability in winter wheat. South Africa: Faculty of Agriculture, Univ. of the Orange Free State, Bloemfontein, PhD thesis
Rife, T.W., Graybosch, R.A., Poland, J.A. (2019) A Field-Based Analysis of Genetic Improvement for Grain Yield in Winter Wheat Cultivars Developed in the US Central Plains from 1992 to 2014. Crop Science, 59(3): 905-910
Senapati, N., Semenov, M.A. (2020) Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Global Food Security, 24: 100340
Sharifi, P., Aminpanah, H., Erfani, R., Mohaddesi, A., Abbasian, A. (2017) Evaluation of Genotype × Environment Interaction in Rice Based on AMMI Model in Iran. Rice Science, 24(3): 173-180
Studnicki, M., Wijata, M., Sobczyński, G., Samborski, S., Gozdowski, D., Rozbicki, J. (2016) Effect of genotype, environment and crop management on yield and quality traits in spring wheat. Journal of Cereal Science, 72: 30-37
Szareski, V.J., Carvalho, I.R., Kehl, K., Levien, A.M., da Rosa, T.C., Barbosa, M.H., Demari, G.H., Pimentel, J.R., Troyjack, C., de Souza, V.Q., Martinazzo, E.G., Villela, F.A., Pedó, T., Aumonde, T.Z. (2018) Research Article Phenotypic and predicted genetic approaches for genotype ranking of wheat seed yield in Brazil. Genetics and Molecular Research, 17(3): 18026
Yan, W., Kang, M., Ma, B., Woods, S., Cornelius, P. (2007) GGE Biplot vs . AMMI Analysis of Genotype-by-Environment Data. Crop Sci, 47: 641-653
Yan, W., Kang, M. (2003) GGE biplot analysis: A graphical tool for breeders, geneticists and agronomists. Boca Raton. FL. USA: CRC Press
Zar, J. (2010) Biostatistical Analysis. New Jersey, USA: Prentice Hall, 5th ed
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/SelSem2201052P
primljen: 23.11.2022.
prihvaćen: 05.12.2022.
objavljen u SCIndeksu: 07.01.2023.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka