Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 6 od 51  
Back povratak na rezultate
2020, vol. 56, br. 2, str. 237-245
Novi prediktivni model za procenu napona ćelije tokom elektrohemijskog postupka za dobijanje bakra iz mesinga - primena genetskog ekspresionog programiranja
aHamedan University of Technology, Department of Metallurgy and Materials Engineering, Hamedan, Iran
bHamedan University of Technology, Department of Mining Engineering, Hamedan, Iran

e-adresasamad.ghasemi@hut.ac.ir
Ključne reči: Elektrohemijsko rastvaranje; Dobijanje; Mesingani otpad; Prediktivni model; GEP
Sažetak
Kada je u pitanju visoka otpornost mesinga prema koroziji u sumpornoj kiselini, postupak luženja predstavlja najvažniji korak tokom hidrometalurškog postupka za dobijanje mesinganog otpada. U ovom radu je predstavljeno elektrohemijsko rastvaranje mesinganih strugotina u sumpornoj kiselini. Elektrohemijski napon ćelije zavisi od različitih parametara. Kada je u pitanju složenost elektrohemijskog rastvaranja, napon sistema je teško predvideti na osnovu operativnih parametara ćelije. Zbog toga je neophodno koristiti modele za predviđanje ćelijskog napona. Tokom ovog istraživanja sprovedeno je 139 eksperimenata luženja pod različitim uslovima. Kombinovanjem rezultata eksperimenata i genetskog ekspresionog programiranja (GEP), parametri, kao što su koncentracija kiseline, trenutna gustina, temperatura i rastojanje između katode i anode, korišćeni su kao ulazni podaci, dok je predviđeni napon tokom elektrohemijskog rastvaranja posmatran kao izlazni podatak. Rezultati su pokazali da je model zasnovan na genetskom ekspresionom programiranju sposoban za predviđanje napona tokom elektrohemijskog rastvaranja legure mesinga gde je koeficijent korelacije iznosio 0,929, a vrednost korena srednje kvadratne greške (RMSE) je bila 0,052. Na osnovu analize osetljivosti ulaznih i izlaznih parametara, koncentracija kiseline i rastojanje između anode i katode su bili najmanje i najviše efikasni parametri, respektivno. Dobijeni rezultati su potvrdili da predloženi model predstavlja moćan alat za razvijanje matematičke jednačine između parametara elektrojemijskog rastvaranja i napona indukovanog promenom ovih parametara.
Reference
Biswas, R.K., Karmakar, A.K., Kumar, S.L. (2016) Recovery of manganese and zinc from spent Zn-C cell powder: Experimental design of leaching by sulfuric acid solution containing glucose. Waste Management, 51: 174-181
Borgonovo, E. (2017) Sensitivity Analysis: An Introduction for the Management Scientist. Springer
Coram-Uliana, N.J., van Hille, R.P., Kohr, W.J., Harrison, S.T.L. (2006) International Biohydrometallurgy Symposium (16th), 25-29 September, Cape Town, South Africa, Proc. p. 237-244
Dehghani, H. (2018) J. Min. Environ, 9 (2), 349-360
Ebrahimzade, H., Khayati, G.R., Schaffie, M. (2018) A novel predictive model for estimation of cobalt leaching from waste Li-ion batteries: Application of genetic programming for design. Journal of Environmental Chemical Engineering, 6(4): 3999-4007
Ferreira, C. (2001) Complex Syst, 13 (2), 87-129
Gana, R., Figueroa, M., Kattan, L., Moller, I., Esteso, M.A. (1995) Anode-support system for the direct electrorefining of cement copper: Process conditions using a circular cell with vertical rotary cathode. Journal of Applied Electrochemistry, Part II, 25(11): 1052-1056
Gupta, C.K. (2003) Chemical metallurgy: Principles and practice. Weinheim: Wiley-VCH, 758-758
Hoseinian, F.S., Abdollahzade, A., Mohamadi, S.S., Hashemzadeh, M. (2017) Recovery prediction of copper oxide ore column leaching by hybrid neural genetic algorithm. Transactions of Nonferrous Metals Society of China, 27(3): 686-693
Hosseini, T., Daneshpayeh, M., Selomulya, C., Haque, N., Zhang, L. (2017) Chemical kinetic modeling and parameter sensitivity analysis for the carbonation of Ca2+ and Mg2+ under ambient conditions. Hydrometallurgy, 167: 141-152
Hosseini, T., Mostoufi, N., Daneshpayeh, M., Rashchi, F. (2011) Modeling and optimization of synergistic effect of Cyanex 302 and D2EHPA on separation of zinc and manganese. Hydrometallurgy, 105(3-4): 277-283
Iqbal, M.F., Liu, Q.F., Azim, I., Zhu, X., Yang, J., Javed, M.F., Rauf, M. (2020) J. Hazard. Mate, 384, 121322
Kilicarslan, A., Saridede, M.N. (2015) Treatment of Industrial Brass Wastes for the Recovery of Copper and Zinc. Separation Science and Technology, 50(2): 286-291
Li, Y., Yang, S.H., Tang, C.B., Chen, Y.M., He, J., Tang, M.T. (2018) Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery. Journal of Mining and Metallurgy B: Metallurgy, vol. 54, br. 1, str. 73-79
Liao, Y.L., Shi, G.C., Huang, F.R., Zhang, Y. (2019) Recovery of the valuable metals from complex converter slag at elevated temperature with sulfuric acid solution. Journal of Mining and Metallurgy B: Metallurgy, vol. 55, br. 3, str. 359-370
Lupi, C., Pilone, D. (1998) 1998 TMS Annu. Meet., February 15-19, San Antonio, Texas, Proc. pp. 427-432
Lutandula, M.S., Maloba, B. (2013) Recovery of cobalt and copper through reprocessing of tailings from flotation of oxidised ores. Journal of Environmental Chemical Engineering, 1(4): 1085-1090
Mondal, D.N., Sarangi, K., Pettersson, F., Sen, P.K., Saxén, H., Chakraborti, N. (2011) Cu―Zn separation by supported liquid membrane analyzed through Multi-objective Genetic Algorithms. Hydrometallurgy, 107(3-4): 112-123
Ozer, M. (2019) Cobalt and copper recovery from the ancient flotation tailings by selective sulfation roast: leaching process. Journal of Mining and Metallurgy B: Metallurgy, vol. 55, br. 3, str. 315-324
Pathak, A., Roy, A., Manna, M. (2016) Recovery of zinc from industrial waste pickling liquor. Hydrometallurgy, 163: 161-166
Reddy, M.J., Ghimire, B.N.S. (2011) J. Intell. Syst, 18, 211-227
Safarzadeh, M.S., Moradkhani, D., Ashtari, P. (2009) Recovery of zinc from Cd-Ni zinc plant residues. Hydrometallurgy, 97(1-2): 67-72
Sarfo, P., Das, A., Wyss, G., Young, C. (2017) Recovery of metal values from copper slag and reuse of residual secondary slag. Waste Management, 70: 272-281
Shah, K., Gupta, K., Sengupta, B. (2018) Reclamation of copper from spent ammoniacal Printed Circuit Board (PCB) etch solutions. Journal of Environmental Chemical Engineering, 6(2): 2874-2880
Xie, Y., Wei, S., Wang, X., Xie, S., Yang, C. (2016) A new prediction model based on the leaching rate kinetics in the alumina digestion process. Hydrometallurgy, 164: 7-14
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JMMB190924012G
objavljen u SCIndeksu: 18.09.2020.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0