Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:18
  • preuzimanja u poslednjih 30 dana:12

Sadržaj

članak: 2 od 204  
Back povratak na rezultate
2021, vol. 49, br. 2, str. 269-279
Proračun jačine pitinga kod materijala od livenog gvožđa i legura bakra
aTexas Southern University, Department of Industrial Technology, Houston, Texas, USA
bTexas Southern University, Department of Engineering, Houston, Texas, USA
cTexas Southern University, Houston, Texas, USA

e-adresaedward.osakue@tsu.edu
Sažetak
U radu je prikazan pokušaj predviđanja jačine pitinga kod materijala od livenog gvožđa i legura bakra u pogledu čvrstoće prinosa i čvrstoće na pritisak za pouzdanost od 99% sa 107 ciklusa opterećenja. Faktor proporcionalnosti povezuje čvrstoću prinosa i čvrstoću na pritisak sa zateznom čvrstoćom materijala od nodularnog čelika i legure bakra. Dva faktora proporcionalnosti su korišćena za materijale od krtog livenog gvožđa. Formulacija jačine pitinga objedinjuje nominalni faktor dizajna sa 96% pouzdanosti koji se izračunava na osnovu modela verovatnoće baziranog na logfunkciji gustine verovatnoće. Proračun jačine pitinga zasnovan na predviđanjima upoređen je sa proračunima AGMA udruženja i podacima iz drugih izvora. Predviđene vrednosti za sivi liv kretale su se od -11,28% do 25%. Vrednosti za nodularni liv su odstupale od AGMA vrednosti za -30,28% do 1,73% a za nodularni liv od 16,76% do 36,34%. Kod livene bronze variranje je bilo u rasponu od 11,17% do 14,73% ali je veličina uzorka bila mala. Varijacije kod svih vrsta materijala se mogu pripisati brojnim faktorima koji utiču na otpornost na piting. Pošto (javno) nisu dostupni podaci o jačini pitinga kod mnogih razreda livenog gvožđa i legura bakra, oni se mogu izračunati na osnovu izraza razvijenog u ovom radu. Jačina pitinga se kod navedenih materijala može izračunati i kod početnih odmeravanja dizajna, čime bi se izbeglo dugotrajno i skupo ispitivanje zamora usled kontakta u početnim fazama dizajniranja, što je svakako od značaja za validaciju dizajna.
Reference
*** Austempered Ductile Iron. https://www.applied process.com/wp-content/uploads/2018/09/2017-03-30-Typical-Properties-of-FA-in-lb-Version.pdf
*** (2001) Fundamental rating factors and calculation methods for involute spur and helical gear teeth. AGMA 2001-D04, http://wp.kntu.ac.ir/asgari/AGMA%202001-D04.pdf
*** Review of plane stress and plane strain elasticity. http://w3.uacg.bg/UACEG_site/acadstaff/userfiles/study_bg_162_L_02_Plane_Elsticity.pdf, (September 2018)
*** Austempered Ductile Iron. https://www.ductile.org/didata/Section4/4intro.htm
*** (2009) Grey Iron Castings: Specification. IS Indian Standard, (Fifth Revision)
*** Common Material Properties. https://www.efunda.com/materials/common_matl/
Ashby, M.F., Jones, D.R.H. (1986) Engineering Materials 2: An Introduction to Microstructures, Processing and Design. Oxford: Pergamon Press
Ashby, M.F., Jones, D.R.H. (2012) Engineering Materials 1: An Introduction to Properties, Applications and Design. New York: Elsevier, 4 th ed. 127-127
ASM International (1996) ASM Handbook: Fatigue and Fracture. Volume 19
ASM International (1999) Introduction and Perspectives. u: Carburizing: Microstructures and Properties, www.asminternational.org
Bhandari, V.B. Design of Machine Elements. New Delhi: McGraw-Hill Education, 3 rd ed., P 142
Budynas, R.G., Nissbett, J.K. (2010) Shigley's mechanical engineering design. McGraw-Hill Education, 9th ed
Collins, J.A., Busby, H., Staab, G.H. (2010) Mechanical design of machine elements and machines: A failure prevention perspective. New York: John Wiley & Sons, 2nd ed, p. 864
Dobrovolsky, V., Zablonsky, K., Mak, S., Radchik, A., Erlikh, L. (1965) Machine elements. Moscow: Foreign Language Pub. House
Dudley, D.W. (2009) Handbook of Practical Gear Design. Boca Raton: CRC Press
Hearn, E. (1997) Stress Concentration: An overview. Mechanics of Materials, 1 (Third Edition)
Hess, P.E., Bruchman, D., Assakkaf, I.A., Ayyub, B.M. (2002) Uncertainties in Material and Geometric Strength and Load Variables. Naval Engineers Journal, 114(2): 139-166, http://www.assakkaf.com/papers/Journals
IIT-PTEL Module 3: Design for Strength. Kharagpur, Version 2 ME, https://docplayer.net/11615428-Module-3-design-for-strength-version-2-me-iitkharagpur.html
Kalpankjian, S., Schmid, R.S. (2018) Manufacturing Processes for Engineering Materials. India: Pearson, 6 th ed. (SI ed.)
Mohammed, A.D., Kachit, M. Effects of Features of Graphite Nodules on Stress Concentration in Nodular Graphite Cast Iron Material under MultiAxial LoFAng. International Journal of Applied Engineering Research, 12(5): 656-663
Mott, R.L. (2004) Machine elements in mechanical design. New York: Pearson Prentice Hall, 4th ed. (SI Units)
Noguchi, T., Nagaoka, K. (1983) On the Notch Strength of Cast Iron. HUSCAP, Jan 31
Norton, R.L. (2000) Machine design: An integrated approach. Upper Saddle River, New Jersey: Pearson Prentice Hall, Chap. 7
Osakue, E.E., Anetor, L. (2017) A Method for Estimating a Probabilistic Design Factor. Int'l Journal of Research in Engineering and Technology, Vol. 06, Issue 08, pp. 119-129
Osakue, E.E. (1999) A Study of Friction During Low-Velocity Impact. Fredericton, Canada: University of New Brunswick-Department of Mechanical Engineering, Ph.D. Thesis
Osakue, E.E., Anetor, L., Harris, K. (2021) An estimate of the pitting strength of steel materials. FME Transactions, vol. 49, br. 1, str. 1-20
Petrov, M., Chernilevsky, D., Berezovsky, Y. (1988) Machine Design. Moscow: MIR
Polasik, S.J., Williams, J.J., Chawla, N. (2001) Fatigue Crack Initiation and Propagation in Ferrous Powder Metallurgy Alloys. Advances in Powder Metallurgy and Particulate Materials, 2042-2056
Schmid, S.R., i dr. Fundamentals of Machine Elements. New York: CRC Press, 3rd ed
Shigley, J.E., Mischke, C.R. (1996) Standard Handbook of Machine Design. 2nd Edition
Stolarski, T.A. (2000) Elements of Contact Mechanics. u: Tribology in Machine Design, Oxford: Butterworth-Heinemann, Chap. 3
Šraml, M., Flašker, J. (2007) Computational approach to contact fatigue damage initiation analysis of gear teeth flanks. International Journal of Advanced Manufacturing Technology, 31(11-12): 1066-1075
Townsend, D.P. (1986) Common Problems and Pitfalls in Gear Design. NASA Technical Memorandum, 88858, https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19870007600.pdf
Tu, S.T., Zhang, X.C. (2016) Fatigue Crack Initiation Mechanisms. Materials Science and Materials Engineering
Ullman, G.D. (2009) Appendix C: The Statistical Factor of Safety. u: The Mechanical Design Process, New York: McGraw-Hill, 2nd ed
Zahavi, E. (1992) The Finite Element Method in Machine Design. Englewood Cliffs, New Jersey: Prentice Hall
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2102269O
primljen: 15.01.2021.
prihvaćen: 15.03.2021.
objavljen u SCIndeksu: 29.04.2021.
Creative Commons License 4.0

Povezani članci

FME Transactions (2021)
Proračun otpornosti na piting čeličnih materijala
Osakue Edward E., i dr.

FME Transactions (2018)
Projektovanje pravozubih konusnih zupčanika otpornih na piting
Osakue Edward E., i dr.

FME Transactions (2020)
Projektovanje veličine para cilindričnih pužnih zupčanika
Osakue Edward E., i dr.

prikaži sve [5]