Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:15
  • preuzimanja u poslednjih 30 dana:11

Sadržaj

članak: 3 od 204  
Back povratak na rezultate
2021, vol. 49, br. 1, str. 1-20
Proračun otpornosti na piting čeličnih materijala
aTexas Southern University, Department of Industrial Technology, Houston, Texas, USA
bTexas Southern University, Department of Engineering, Houston, Texas, USA
cTexas Southern University, Houston, Texas, USA

e-adresaedward.osakue@tsu.edu
Sažetak
Jedan izraz za procenu nominalne otpornosti na piting čeličnih materijala, baziran na tvrdoći površine, razvijen je korišćenjem prvog principa pouzdanosti od 99% pri ciklusima opterećenja 107 . Vrednosti tvrdoće moraju da se mere Vikersovom skalom tvrdoće. Izraz može da se koristi za svaki čelični materijal dobijen toplim valjanjem, hladnim izvlačenjem, kaljenjem i otpuštanjem ili cementacijom. Formula obuhvata nominalni faktor dizajna sa pouzdanošću od 99% koji se izračunava pomoću probabilističkog modela baziranog na lognormalnoj funkciji gustine verovatnoće. Proračun otpornosti na piting korišćenjem navedenog izraza upoređen je sa proračunom koji je dalo udruženje AGMA i podacima iz drugih izvora navedenih u tabelama 3 i 4. Izraz predviđa manje vrednosti pri manjoj tvrdoći ali veće vrednosti pri većoj tvrdoći. Varijansa se kreće između 15,21% i 10,13% kod brzog kaljenja. Kod cementacije, između proračuna i dostupnih podataka, od 14,23% do 20,26%. Uzimajući u obzir mnoge faktore koji utiču na otpornost na piting navedena varijansa je prihvatljiva. Prednost prikazane formule je u tome što proračun otpornosti na piting novih čeličnih materijala može da se koristi pri odmeravanju početnog dizajna bez dugotrajnog i skupog ispitivanja kontaktnog zamora, što je potrebno za evaluaciju dizajna. Razvijeni metod proračuna može da se primenjuje i za druge materijale, metale i nemetale. Predlaže se primena kod izračunavanja nekih relevantnih faktora podešavanja otpornosti na piting pri razmatranju otpornosti na piting u uslovima istraživanja kao i radnim uslovima.
Reference
*** Contact Stresses and deformations: Precision Machine Design. ME EN 7960, https://my.mech.utah.edu/~me7960/lectures/Topic7-ContactStressesAndDeformations.pdf
*** Review of plane stress and plane strain elasticity. http://w3.uacg.bg/UACEG_site/acadstaff/userfiles/study_bg_162_L_02_Plane_Elsticity.pdf, (September 2018)
*** (2001) Fundamental rating factors and calculation methods for involute spur and helical gear teeth. AGMA 2001-D04, http://wp.kntu.ac.ir/asgari/AGMA%202001-D04.pdf
*** Burnishing for Improved Part Quality and Lower Costs. http://www.productionmachining.com/articles/burnishing-for-improved-part-quality-and-lower-costs
Ashby, M.F., Jones, D.R.H. (2012) Engineering Materials 1: An Introduction to Properties, Applications and Design. New York: Elsevier, 4 th ed. 127-127
Ashby, M.F., Jones, D.R.H. (1986) Engineering Materials 2: An Introduction to Microstructures, Processing and Design. Oxford: Pergamon Press
ASM International (1996) ASM Handbook: Fatigue and Fracture. Volume 19
ASM International (1999) Introduction and Perspectives. u: Carburizing: Microstructures and Properties, www.asminternational.org
Bhandari, V.B. Design of Machine Elements. New Delhi: McGraw-Hill Education, 3 rd ed., P 142
Budynas, R.G., Nissbett, J.K. (2010) Shigley's Mechanical Engineering Design. McGraw Hill Education, 9th ed
Chang, K.H. (2013) Product Performance Evaluation Using CAD/CAE. New York: Academic Press, Chap. 4
Chang, W.R., Ling, F.F. (1992) Normal impact model of rough surfaces. Journal of Tribology, 114(3), 439-447
Chernilevsky, D. (1990) A Practical Course in Machine Design. Moscow: MIR, 498-498
Childs, P.R.N. (2014) Mechanical Design Engineering Handbook. Boston: Elsevier-Butterworth Heinemann
Collins, J.A., Busby, H., Staab, G.H. (2010) Mechanical design of machine elements and machines: A failure prevention perspective. New York: John Wiley & Sons, 2nd ed, p. 864
Davis, J.R., ed. (1998) Structure/Property Relationships in Irons and Steels. u: Metals Handbook Desk Edition, ASM International, Second Edition, p. 153-173
Dobrovolsky, V., Zablonsky, K., Mak, S., Radchik, A., Erlikh, L. (1965) Machine elements. Moscow: Foreign Language Pub. House
Dossett, J. (2007) Make Sure Your Specified Heat Treatment is Achievable. Heat Treating Progress, March/April, p. 23-30
Dudley, D.W. (2009) Handbook of Practical Gear Design. Boca Raton: CRC Press
Errichello, R.L., Muller, J. How to analyze gear failures. https://www.researchgate.net/publication/225602159_How_to_analyze_gear_failures, (Accessed September 2020)
Fernandes, P.J.L., McDuling, C. (1997) Surface Contact Fatigue Failures in Gears. Engineering Failure Analysis, 4(2): 99-107
Glaeser, W.A., Shaffer, S.J. (1991) Contact Fatigue. u: ASM Handbook: Fatigue and Fracture, 19: 331-336
Gorla, C., Rosa, F., Conrado, E., Albertini, H. (2014) Bending and Contact Fatigue Strength of Innovative Steel for Large Gears. Proc IMechE Part C: J Mechanical Engineering Science, Vol. 228(14) 2469-2482; agepub.co.uk/journalsPermissions.nav
Grbović, A.M., Rašuo, B.P., Vidanović, N.D., Perić, M.M. (2011) Simulation of crack propagation in titanium mini dental implants (MDI). FME Transactions, vol. 39, br. 4, str. 165-170
Hess, P.E., Bruchman, D., Assakkat, I.A., Ayyub, B.M. (2002) Uncertainties in Material Strength, Geometric, and Load Variables. http://www.assakkaf.com/papers/Journals
Ishibashi, A., Hoyashita, S., Yoshino, H. (1984) Studies on upper limit of surface durability of phosphor bronze. Bulletin of JSME, 27(225), 592-600
Johnson, K.L. (1985) Contact Mechanics. Cambridge: Cambridge University press
Juvinall, R.C., Marshek, K.M. (2017) Juninall's fundamentals of machine component design. Singapore: SI Wiley
Kalpankjian, S., Schmid, R.S. (2018) Manufacturing Processes for Engineering Materials. India: Pearson, 6 th ed. (SI ed.)
Kastratović, G., Vidanović, N., Grbović, A., Rašuo, B. (2018) Approximate determination of stress intensity factor for multiple surface cracks. FME Transactions, vol. 46, br. 1, str. 39-45
Kohara Gear Industry Co., Ltd (KHK) Calculations of gear dimensions. Saitama-ken, Japan, 332-0022, https://khkgears.net/new/gear_knowledge/gear_technical_reference/calculation_gear_dimensi ons.html, September, 2018
Lemaster, R., Boggs, B., Bunn, J., Hubbard, C., Watkins, T. (2009) Grinding Induced Changes in Residual Stresses of Carburized Gears. Gear Technology, 42-49, March/April
Maitra, G.M. (1994) Handbook of Gear Design. New Delhi, India: McGraw-Hill Education
Mott, R.L. (2004) Machine elements in mechanical design. New York: Pearson Prentice Hall, 4 th ed. (SI Units)
Norton, R.L. (2000) Machine design: An integrated approach. Upper Saddle River, New Jersey: Pearson Prentice Hall, Chap. 7
Osakue, E.E. (1999) A Study of Friction During Low-Velocity Impact. Fredericton, Canada: University of New Brunswick-Department of Mechanical Engineering, Ph.D. Thesis
Osakue, E.E. (2016) Simplified spur gear design. u: International Mechanical Engineering Congress and Exposition 2016 IMECE, November 11-17, Proceedings of, Phoenix Arizona, USA, Paper Number IMECE2016-65426
Osakue, E.E. (2013) Probabilistic Design with Gerber Fatigue Model. Mechanical Engineering Research, Vol. 3, No. 1
Osakue, E.E. (2015) Lognormal Reliability-Based Component Design. Houston, Texas, U.S.A: Texas Southern University-Department of Industrial Technology, Technical report
Osakue, E.E. (2014) Probabilistic Fatigue Design of Shaft for Bending and Torsion. Int'l Journal of Research in Engineering and Technology, 3(9): 370-386
Osakue, E.E., Anetor, L. (2017) A Method for Estimating a Probabilistic Design Factor. Int'l Journal of Research in Engineering and Technology, Vol. 06, Issue 08, pp. 119-129
Osakue, E.E., Anetor, L. (2016) A Lognormal Reliability Design Model. Int'l Journal of Research in Engineering and Technology, 5(7): 245-259
Osakue, E.E., Anetor, L. (2016) Spur Gear Design: Some New Perspectives. Int'l Journal of Research in Engineering and Technology, Vol. 5, Is. 7, pp. 275-286
Osakue, E.E., Anetor, L., Odetunde, C. (2015) Reliability-Based Component Design. u: International Mechanical Engineering Congress and Exposition 2015 IMECE, November 13-19, Houston, Texas, USA, Proceedings of, ASME International, str. V011T14A012, Paper Number IMECE2015-50700
Osakue, E.E., Anetor, L. (2020) Design sizing of cylindrical worm gearsets. FME Transactions, vol. 48, br. 1, str. 31-45
Petrašinović, N., Petrašinović, D., Rašuo, B., Milković, D. (2017) Aircraft duraluminum wing spar fatigue testing. FME Transactions, vol. 45, br. 4, str. 531-536
Petrov, M., Chernilevsky, D., Berezovsky, Y. (1988) Machine Design. Moscow: MIR
Polasik, S.J., Williams, J.J., Chawla, N. (2001) Fatigue Crack Initiation and Propagation in Ferrous Powder Metallurgy Alloys. Advances in Powder Metallurgy and Particulate Materials, 2042-2056
Popov, V.L. (2010) Contact Mechanics and Friction: Physical Principles and Applications. New York
Roshetov, D., Ivanov, A., Fadeev, V. (1990) Reliability of Machines. Moscow: MIR
Roux, M., Zeng, R., Wilmes, R., Kim, K.Y. Remediation of Lost Compressive Residual Stresses in Carburized Steel Gears. Purdue-Materials Engineering
Rudnev, V. (2004) Residual stresses in induction hardening: Simply Complex. Heat Treating Progress, 27-28
Schmid, S.R., Hamrock, B.J., Jacobson, B.O. (2014) Fundamentals of machine elements. New York: CRC Press, 3rd ed
Shigley, J.E., Mischke, C.R. Coefficient of Friction. u: Standard Handbook of Machine Design, Engineers Edge, 2nd Edition, https://www.engineersedge.com/coeffients_of_friction.htm
Shipley, E.E. (1967) Gear failures: How to recognize them, what causes them, and how to avoid them. https://www.xtek.com/wpcontent/uploads/2018/05/xtek-gear-failures.pdf, (Accessed September 2020)
Steel Founders' Society of America General Properties of Steel Castings. u: Steel Casting Handbook, Supplement 5, p. 9-10
Stolarski, T.A. (2000) Elements of Contact Mechanics. u: Tribology in Machine Design, Oxford: Butterworth-Heinemann, Chap. 3
Sundararajan, G. (1990) The energy absorbed during the oblique impact of a hard ball against ductile target materials. International Journal of Impact Engineering, 9(3), 343-358
Šraml, M., Flašker, J. (2007) Computational Approach to Contact Fatigue Damage Initiation Analysis of Gear Teeth Flanks. Int J Adv Manuf Technol, 31: 1066-1075
Tallian, T.E. (1992) Failure Atlas for Hertz Contact Machine Elements. ASME Press
Townsend, D.P. (1986) Common Problems and Pitfalls in Gear Design. NASA Technical Memorandum, 88858
Tribology Group (2014) Contact Mechanics. u: Tribological Design Guide, Institution of Mechanical Engineers, Part 3, 2 nd ed
Tu, S.T., Zhang, X.C. (2016) Fatigue Crack Initiation Mechanisms. Materials Science and Materials Engineering
Ullman, G.D. (2009) Appendix C: The Statistical Factor of Safety. u: The Mechanical Design Process, New York: McGraw-Hill, 2nd ed
Zahavi, E. (1992) The Finite Element Method in Machine Design. Englewood Cliffs, New Jersey: Prentice Hall
Zhao, F., Ding, X., Fan, X., Cui, R., Li, Y., Wang, T. (2018) Contact Fatigue Failure Analysis of Helical Gears with Non-Entire Tooth Meshing Tests. Metals, 8, 693
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fme2101001O
primljen: 15.09.2020.
prihvaćen: 15.11.2020.
objavljen u SCIndeksu: 20.12.2020.
Creative Commons License 4.0

Povezani članci