Akcije

Mathematica Moravica
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 4 od 65  
Back povratak na rezultate
2022, vol. 26, br. 1, str. 77-88
The complex-type Padovan-p sequences
(naslov ne postoji na srpskom)
aKafkas University, Faculty of Science and Letters, Department of Mathematics, Kars, Turkey
bPamukkale University, Faculty of Science and Arts, Department of Mathematics, Denizli, Turkey

e-adresaozgur_erdag@hotmail.com, shalici@pau.edu.tr, odeveci36@hotmail.com
Ključne reči: The complex-type Padovan-p sequence; matrix; representation
Sažetak
(ne postoji na srpskom)
In this paper, we define the complex-type Padovan-p sequence and then give the relationships between the Padovan-p numbers and the complex-type Padovan-p numbers. Also, we provide a new Binet formula and a new combinatorial representation of the complex-type Padovan-p numbers by the aid of the nth power of the generating matrix of the complex-type Padovan-p sequence. In addition, we derive various properties of the complex-type Padovan-p numbers such as the permanental, determinantal and exponential representations and the finite sums by matrix methods.
Reference
Berzsenyi, G. (1975) Sums of products of generalized Fibonacci numbers. Fibonacci Quarterly, 13(4): 343-344
Brualdi, R.A., Gibson, P.M. (1977) Convex polyhedra of doubly stochastic matrices I: Applications of permanent function. Journal of Combinatorial Theory, Series A, 22(2): 194-230
Chen, W.Y.C., Louck, J.D. (1996) The combinatorial power of the companion matrix. Linear Algebra and its Applications, 232: 261-278
Deveci, O., Karaduman, E. (2017) On The Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics, 2(46): 579-592
Deveci, Ö., Shannon, A.G. (2021) The complex-type k-Fibonacci sequences and their applications. Communications in Algebra, 49(3): 1352-1367
Deveci, Ö., Shannon, A.G. (2018) The quaternion-Pell sequence. Communications in Algebra, 46(12): 5403-5409
Horadam, A.F. (1961) A generalized Fibonacci sequence. American Mathematical Monthly, 68(5): 455-459
Horadam, A.F. (1963) Complex Fibonacci numbers and Fibonacci quaternions. American Mathematical Monthly, 70(3): 289-291
Horadam, A.F., Shannon, A.G. (1976) Ward's Staut-Clausen problem. Mathematica Scandinavica, 39(2): 239-250
Kalman, D. (1982) Generalized Fibonacci numbers by matrix methods. Fibonacci Quarterly, 20 (1): 73-76
Kilic, E. (2008) The Binet formula, sums and representations of generalized Fibonacci p-numbers. European Journal of Combinatorics, 29(3): 701-711
Kilic, E., Taşci, D. (2007) On The permanents of some tridiagonal matrices with applications to The Fibonacci and Lucas numbers. Rocky Mountain Journal of Mathematics, 37(6): 1953-1969
Kiliç, E., Taşci, D. (2006) On The generalized order-$k$ Fibonacci and Lucas numbers. Rocky Mountain Journal of Mathematics, 36(6): 1915-1926
Lancaster, P., Tismenetsky, M. (1985) The theory of matrices: With applications. Elsevier
Lidl, R., Niederreiter, H. (1994) Introduction to finite fields and their applications. Cambridge University Press
Ozgur, N.Y. (2005) On The sequences related to Fibonacci and Lucas numbers. Journal of the Korean Mathematical Society, 42(1): 135-151
Shannon, A.G. (1974) Explicit expressions for powers of arbitrary order linear recursive sequences. Fibonacci Quarterly, 12(3): 281-287
Shannon, A.G. (1974) Some properties of a fundamental recursive sequence of arbitrary order. Fibonacci Quarterly, 12(4): 327-335
Shannon, A.G. (1976) Ordered partitions and arbitrary order linear recurrence relations. Mathematics Student, 43 (3): 110-117
Stakhov, A.P., Rozin, B. (2006) Theory of Binet formulas for Fibonacci and Lucas p-numbers. Chaos, Solitons & Fractals, 27(5): 1162-1177
Stakhov, A.P., Rozin, B. (2006) The continuous functions for the Fibonacci and Lucas p-numbers. Chaos, Solitons & Fractals, 28(4): 1014-1025
Tasci, D., Firengiz, M.C. (2010) Incomplete Fibonacci and Lucas p-numbers. Mathematical and Computer Modelling, 52: 1763-1770
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/MatMor2201077E
primljen: 12.09.2021.
prihvaćen: 01.12.2021.
objavljen onlajn: 31.01.2022.
objavljen u SCIndeksu: 25.06.2022.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka