Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[2]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 5 od 28  
Back povratak na rezultate
2019, vol. 47, br. 3, str. 424-429
Predikcija i geometrijska adaptivna kontrola hrapavosti površine kod obrade bušenjem
aB. S. Abdur Rahman Crescent Institute of Science and Technology, Department of Electronics and Instrumentation Engineering, Chennai, India
bB. S. Abdur Rahman Crescent Institute of Science and Technology, Department of Mechanical Engineering, Chennai, India
cHindustan Institute of Technology and Science, Centre for Automation and Robotics, Chennai, India

e-adresasusaimaryj@gmail.com
Ključne reči: adaptive control; CNC drilling; roughness; space vector machine (SVM)
Sažetak
Hrapavost površine je primarni faktor u evaluaciji kvaliteta komponente koja određuje svojstva habanja i zamora i kvalitet sklopa. Ovo istraživanje se bavi kontrolom kvaliteta završne obrade u realnom vremenu kod obrade bušenjem, primenom strategije geometrijske adaptivne kontrole. Merenje sile i signala vibracija za vreme bušenja obavljeno je dinamometrom sa senzorom i akcelerometrom. Zapreminski SVM model je upotrebljen za modeliranje hrapavosti površine korišćenjem sile, vibracija i parametara obrade. Utvrđeno je da tačnost modela za predikciju iznosi 94% i model je uspešno korišćen za kontrolu hrapavosti prilikom obrade bušenjem. Adaptivna šema koristi kontroler na bazi neuronskih mreža za podešavanje parametara bušenja da bi se obezbedila postavljena tolerancija hrapavosti. Performanse kontrolera pokazuju sve mogućnosti prikazane metodologije za praktičnu primenu u industriji.
Reference
Abu-Mahfouz, I., El, A.O., Esfakur, R.A.H.M., Banerjee, A. (2017) Surface roughness prediction as a classification problem using support vector machine. International Journal of Advanced Manufacturing Technology, vol.92(1-4), pp.803-815
Carlos, E., Cruz, D., de Aguiar, P.R. (2013) Monitoring in precision metal drilling process using multi-sensors and neural network. International Journal of Advanced Manufacturing Technology, vol.66, pp.151-158
Çaydas, U., Ekici, S. (2012) Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, vol 23, pp. 639-650
Dinakaran, D., Sampathkumar, S., Madhivanan, K. (2012) An experimental investigation of surface roughness monitoring in surface grinding through ultrasonic technique. Mechatronics and Intelligent Manufacturing, vol.1, pp.107-118
Galloway, D.F. (1957) Some experiments on the influence of various factors on drill performance. Transactions.A.S.M.E, Vol. 19, pp. 191
Giriraj, B., Gandhinathan, R., Prabhu, R.V., Vijayaraghavan, T. (2008) Adaptive control in high speed machining for improved surface finish. Indian Journal of Engineering and material sciences, Vol 15, pp.311-316
HMT (1980) Production Technology. Tata McGraw-Hill Publishing Co. Ltd
Hossain, B.S., Ahmed, C.I. (2015) Investigation of tool wear and surface finish by analyzing vibration signals in turning Assab-705 steel. Machining Science and Technology: An International Journal, vol.19-2, pp.236-261
Huang, P.B., Shiang, W., Jou, Y., Chang, C., Ma, 'an C. (2010) In-process adaptive control of surface roughness in end milling operations. u: Proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July 2010
Jantunen, E. (2002) A summary of methods applied to tool condition monitoring. International journal of machine tools and manufacture, vol.42-9, pp. 997-1010
Jiang, Z. (2010) Intelligent prediction of surface roughness of milling aluminium alloy based on least square support vector machine. IEEE Chinese control and decision conference
Karimi, Z.N., Heidary, H., Yousefi, J., Sadeghi, S., Minak, G. (2018) Experimental investigation on delamination in nanocomposite drilling. FME Transactions, vol. 46, br. 1, str. 62-69
Karri, V., Kiatcharoenpol, T. (2003) Prediction of internal surface roughness in drilling using three feedforward neural networks: A comparison. u: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP'OZ), vol. 4
Mary, S.J., Banu, S.U., Dinakaran, D., Nakandhrakumar, R.S. Adaptive optimization using Grey relational analysis and PID control of CNC drilling process. u: IEEE International Conference on Robotics Automation Control and Embedded sytems 18-20 February, Hindustan Univeristy, RACE-2015
Mat, D.A., Mohd, Z.A., Sallehuddin, R. (2011) Overview of support vector machine in modeling machining performances. Procedia Engineering, vol.24, pp. 308-312
Sanjay, C., Jyothi, C. (2006) A study of surface roughness in drilling using mathematical analysis and neural networks. International Journal of Advanced Manufacturing Technology, vol.29, pp. 846-852
Sanjay, P. (2014) Hybrid intelligence systems and artificial neural network (ANN) approach for modeling of surface roughness in drilling. Cogent Engineering, vol.1(1)
Susai, M.J., Sabura, B.U., Dinakaran, D., Nakandhrakumar, R.S. (2017) Adaptive control by multi-objective optimization with fuzzy inference system and neural predictive controller. Insight-Non-Destructive Testing And Condition Monitoring, vol.59(1), pp. 38-44
Teti, R., Jemielniak, K., o'Donnell G., Dornfeld, D. (2010) Advanced monitoring of machining operations. CIRP Annals - Manufacturing Technology, Vol.59, pp.717-739
Vrabel, M., Mankova, I., Beno, J. (2016) Monitoring and control of manufacturing process to assist the surface workpiece quality when drilling. Procedia CIRP, (41), pp.735-739
Yang, L.D., Chen, J.C., Chow, H.M., Lin, C.T. (2006) Fuzzy-nets-based in-process surface roughness adaptive control system in end-milling operations. International Journal of Advanced Manufacturing Technology, vol.28, pp. 236-248
Zhang, J.Z., Chen, J.C. (2007) The development of an in-process surface roughness adaptive control system in end milling operations. International Journal of Advanced Manufacturing Technology, vol.31, pp. 877-887
Zhang, N., Shetty, D. (2016) An effective LS-SVM based approach for surface roughness prediction in machined surfaces. Neurocomputing, Vol.198, pp. 35-39
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/fmet1903424S
objavljen u SCIndeksu: 10.10.2019.
Creative Commons License 4.0