Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:19
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 1 od 12  
Back povratak na rezultate
2023, vol. 18, br. 1, str. 111-132
Klimatske promene u EU - klaster analiza i regresija
Univerzitet u Nišu, Prirodno-matematički fakultet, Srbija

e-adresamilos.krstic1@pmf.edu.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Univerzitet u Nišu, Prirodno-matematički fakultet) (MPNTR - 451-03-68/2020-14/200124)

Sažetak
Klimatske promene se često posmatraju kao najglobalniji i najkompleksniji problem sa kojim se svet suočio u dosadašnjem razvoju. Emisije štetnih gasova, porast temperature, promenljive količine padavina, pojava ekstremnih vremenskih prilika utiču na sve zemlje nezavisno od njihove geografske pozicije i nivoa razvoja, determinišući njihove proizvodne potencijale i kvalitet životnih uslova stanovništva. Predmet i cilj ovog rada je da ispita uticaj ekonomskih, tehnoloških i demografskih determinanti na emisiju SO2 u 18 država Evropske Unije u vremenskom periodu od 2011. do 2020. godine. U istraživanju su korišćeni metoda klaster analize k-srednjih vrednosti i panel regresiona analiza. Primenom metoda k-srednjih vrednosti, izvršeno je grupisanje 18 zemalja Evropske unije u 2 klastera, prema visini emisija odabranih gasova staklene bašte (CO2 , CH4 , HFC, PFC, SF6 ) per capita. U "zelenom klasteru" nalaze se sledeće zemlje: Češka, Nemačka, Austrija, Poljska, Belgija, Irska i Holandija. "Crveni klaster" uključuje ostale analizirane zemlje Evropske unije. Rezultati panel regresionog modela u "zelenom klasteru" pokazali su da na emisiju SO2 statistički značajno i pozitivno utiču Energetska efikasnost i Proizvodnja električne energije iz neobnovljivih izvora. S druge strane, rezultati analize u "crvenom klasteru" sugerisali su da Troškovi istraživanja i razvoja predstavljaju najvažniji prediktor emisija SO2.
Reference
*** (2008) Energy technology perspective 2008: Scenarios and strategies to 2050. Paris: International Energy Agency (IEA)
*** (2008) CO2 capture and storage: A key abatement option. Paris: International Energy Agency
*** (2010) Development and climate change. Washington: World Bank
*** (1992) United Nations framework convention on climate change. New York: United Nations
*** (2014) Programme of action. New York: United Nation Population Food (UNPF)
Auffhammer, M., Hsiang, S.M., Schlenker, W., Sobel, A. (2013) Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy, 7(2): 181-198
Banuri, T., Opschoor, H. (2007) Climate change and sustainable development. DESA Working Paper No. 56
Barnett, J., Evans, L.S., Gross, C., Kiem, A.S., Kingsford, R.T., Palutikof, J.P., Pickering, C.M., Smithers, S.G. (2015) From barriers to limits to climate change adaptation: Path dependency and the speed of change. Ecology and Society, 20(3): 5-16
Bergquist, P., Mildenberger, M., Stokes, L.C. (2020) Combining climate, economic, and social policy builds public support for climate action in the US. Environmental Research Letters, 15(5): 1-10
Bierbaum, R., Holdrend, J.P., Maccracken, M., Moss, R.H., Raven, P.H., Nakicenovic, N. (2007) Confronting climate change: Avoiding the unmanageable and managing the unavoidable. New York: United Nations Foundation
Bok, H. (2018) Baron de Montesquieu, Charles-Louis de Secondat. Retrieved from http://plato.stanford.edu/archives/win2018/e ntries/montesquieu
Cole, M.A., Neumayer, E. (2004) Examining the impact of demographic factors on air pollution. Population and Environment, 26(1): 5-21
Dietz, T., Rosa, E.A. (1997) Effects of population and affluence on CO2 emissions. Proceedings of the National Academy of Sciences, 94(1): 175-179
Dosio, A., Panitz, H.J. (2016) Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Climate Dynamics, 46(5-6): 1599-1625
Đokić, D., Novaković, T., Tekić, D., Matkovski, B., Zekić, S., Milić, D. (2022) Technical efficiency of agriculture in the European Union and western Balkans: SFA method. Agriculture, 12(12): 1992-1992
Eloriaga, J., producer (1992) Panel data models (Pooled OLS, FE, RE, LSDVs) in STATA. Retrieved from https://www.youtube.com/watch?v=b02s2D dRvzM
Franta, B. (2022) Weaponizing economics: Big oil, economic consultants, and climate policy delay. Environmental Politics, 31(4): 555-575
Gaweł, A., Krstić, M. (2021) Gender gaps in entrepreneurship and education levels from the perspective of clusters of European countries. Journal of Developmental Entrepreneurship, 26(04): 2150024
Giddens, A. (2009) Politics of climate change. London: Policy Network
Greene, W.H. (2018) Econometric analysis. New York: Pearson
Hashmi, R., Alam, K. (2019) Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. Journal of Cleaner Production, 231: 1100-1109
Hoegh-Guldberg, O., Jacob, D., Taylor, M., Guillén, B.T., Bindi, M., Brown, S., Camilloni, I.A., Diedhiou, A., Djalante, R., Ebi, K., Engelbrecht, F., Guiot, J., Hijioka, Y., Mehrotra, S., Hope, C.W., Payne, A.J., Pörtner, H.-.O., Seneviratne, S.I., Thomas, A. (2019) The human imperative of stabilizing global climate change at 1.5 C. Science, 365(6459): eaaw6974-eaaw6974
IPCC (2007) Climate change 2007: The physical science basis. Cambridge: Cambridge University Press, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
Iqbal, U., Rabrenovic, M., Li, Y.C. (2019) Health care quality challenges in low-and middle-income countries. International Journal for Quality in Health Care, 31(3): 165-165
Kilian, L., Vigfusson, R.J. (2017) The role of oil price shocks in causing U.S. recessions. Journal of Money, Credit and Banking, 49(8): 1747-1776
Kukla-Gryz, A. (2009) Economic growth, international trade and air pollution: A decomposition analysis. Ecological Economics, 68(5): 1329-1339
Nemet, G.F., Kammen, D.M. (2007) Asymmetric impacts of energy efficiency on carbon emissions: A comparative analysis between developed and developing economies. Energy, 227: 120485-120485
Nemet, G.F., Kammen, D.M. (2007) US energy research and development: Declining investment, increasing need, and the feasibility of expansion. Energy Policy, 35(1): 746-755
Newey, W.K., West, K.D. (1987) A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica, 55(3): 703-708
Petrović, P., Nikolić, G., Ostojić, I. (2018) Emissions of CO2 in the European Union: Empirical analysis of demographic, economic and technological factors. Stanovništvo, 56(1): 63-82; in Serbian
Schmidheniy, K. (2018) Panel data: Fixed and random effects: Short guides to microeconometrics. Basel: University of Basel
Shalizi, Z., Lecocq, F. (2009) Climate change and the economics of targeted mitigation in sectors with long-lived capital stock. Policy Research Working Paper, 5063; Retrieved from: http://hdl.handle.net/10986/4254
Stern, N. (1992) The economics of climate change. Retrieved from http://www.hmtreasury.gov.uk/independent_ reviews/stern_review_economics_climate_c hange/stern_review_report.cfm
Tijanić, L. (2010) Regional (un)competitiveness in the Republic of Croatia. Ekonomski pregled, 61(7-8): 419-454;i n Croatian
Voumik, L.C., Islam, M.A., Rahaman, A., Rahman, M.M. (2002) Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis. SN Business & Economics, 2(9): 133-133
Wisniak, J. (2002) Svante Arrhenius and the greenhouse effect. Indian Journal of Chemical Technology, 9(3): 165-173
Wooldridge, J.M. (2015) Introductory econometrics: A modern approach. Boulevard Mason: South-Western Cengage Learning
York, R., Rosa, E.A., Dietz, T. (2003) STIRPAT, IPAT, and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecological Economics, 46(3): 351-365
Zhou, Y., Chen, X., Tan, X., Liu, C., Zhang, S., Yang, F., Zhou, W., Huang, H. (2018) Mechanism of CO2 emission reduction by global energy interconnection. Global Energy Interconnection, 1(4): 409-419
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/sjm18-43601
primljen: 24.03.2023.
prihvaćen: 05.05.2023.
objavljen u SCIndeksu: 30.06.2023.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka