• citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:10
  • full-text downloads in 30 days:10


article: 4 from 14  
Back back to result list
2014, vol. 69, iss. 3, pp. 453-458
Long-period grating fiber-optic sensors of bending for applications in pulmonology
aUniversity of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča
bUniversity of Belgrade, Faculty of Medicine, Clinical Hospital Center 'Bežanijska kosa'
cInstitute of Photonic Technologies, Aston University, UK
Keywords: sensor; optical fiber grating; respiratory volume
Here we present a fiber-optic sensor of bending and demonstrate its application in monitoring of assisted breathing. The sensor is based on a long-period fiber grating and uses a simple monochromatic interrogation scheme. Here, we first explain the working principle of the sensor and then present a method for the measurement of respiratory volumes. The measurement is based on the correlation between a change in lung volume and the corresponding change in a local torso curvature. We validate the method by applying a calibration-test measurement procedure on a set of 15 healthy volunteers. Results show good sensor accuracy in measurements of the tidal and minute respiratory volumes for clinically relevant types of breathing. Finally, we compare the proposed method with the current clinical standards and competing techniques.
Allsop, T., Webb, D.J., Bennion, I. (2003) Investigations of the spectral sensitivity of long period gratings fabricated three-layered optical fiber. Journal of Lightwave Technology, 21(1): 264-268
Allsop, T., Carroll, K., Lloyd, G., Webb, D.J., Miller, M., Bennion, I. (2007) Application of long-period-grating sensors to respiratory plethysmography. Journal of biomedical optics, 12(6): 064003
Babchenko, A., Khanokh, B., Shomer, Y., Nitzan, M. (1999) Fiber optic sensor for the measurement of respiratory chest circumference changes. Journal of biomedical optics, 4(2): 224-9
Barbosa, R.C.C., de Carvalho, C.R.F., Moriya, H.T. (2012) Respiratory inductive plethysmography: a comparative study between isovolume maneuver calibration and qualitative diagnostic calibration in healthy volunteers assessed in different positions. Jornal brasileiro de pneumologia, 38(2): 194-201
Battista, S., et al. (2011) Medical measurements and applications proceedings. pp. 29-34
Baudouin, S.V. (2002) The pulmonary physician in critical care 3: Critical care management of community acquired pneumonia. Thorax, 57(3): 267-271
Bennion, I., Williams, J.A.R., Zhang, L., Sugden, K., Doran, N.J. (1996) Uv-written in-fibre Bragg gratings. Optical and Quantum Electronics, 28(2): 93-135
Erdogan, T. (1997) Cladding-mode resonances in short- and long-period fiber grating filters. Journal of the Optical Society of America A, 14(8): 1760
Folke, M., Cernerud, L., Ekström, M., Hök, B. (2003) Critical review of non-invasive respiratory monitoring in medical care. Medical and biological engineering and computing, 41(4): 377-83
Grillet, A., Kinet, D., Witt, J., Schukar, M., Krebber, K., Pirotte, F., Depre, A. (2008) Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring. IEEE Sensors Journal, 8(7): 1215-1222
Homola, J., Yee, S.S., Gauglitz, G. (1999) Surface plasmon resonance sensors: review. Sensors and Actuators B: Chemical, 54(1-2): 3-15
James, S.W., Tatam, R.P. (2003) Optical fibre long-period grating sensors: characteristics and application. Measurement Science and Technology, 14(5): R49-R61
Kashyap, R. (2010) Fiber Bragg Gratings. Academic, str. 119-187
Konno, K., Mead, J. (1967) Measurement of the separate volume changes of rib cage and abdomen during breathing. Journal of Applied Physiology, 22(3): 407-22
Mathew, J., Semenova, Y., Farrell, G. (2012) A miniature optical breathing sensor. Biomedical optics express, 3(12): 3325-31
Mehta, S., Hill, N.S. (2001) Noninvasive ventilation. American Journal of Respiratory and Critical Care Medicine, 163(2): 540-77
Neuman, P., et al. (1998) Chest, 113, pp. 443-45
Othonos, A., Kalli, K. (1999) Fibre Bragg gratings: Fundamentals and applications in telecommunications and sensing. Artech House
Petrovic, J., Lai, Y., Bennion, I. (2008) Numerical and experimental study of microfluidic devices in step-index optical fibers. Applied Optics, 47(10): 1410
Petrovic, M., et al. (2013) Annual international conference of the IEEE engineering in medicine and biology society, Proceedings of. 2013, pp. 2660-2663
Petrović, M.D., Petrovic, J., Daničić, A., Vukčević, M., Bojović, B., Hadžievski, Lj., Allsop, T., Lloyd, G., Webb, D.J. (2014) Non-invasive respiratory monitoring using long-period fiber grating sensors. Biomedical Optics Express, 5(4): 1136
Silva, A., et al. (2011) Meas. Sci. Technol, 22, pp. 075801-075805
Strömberg, N.O. (2001) Error analysis of a natural breathing calibration method for respiratory inductive plethysmography. Medical and biological engineering and computing, 39(3): 310-4
Watson, H. (1980) ISAM Proc. 3rd Intl. Symp. ambulatory monitoring, academic, San Diego. p. 537
Wechowski, J., i dr. (1990) J Appl. Physiol, 68, pp. 1732-1738
Wehrle, G., Nohama, P., Kalinowski, H.J., Torres, P.I., Valente, L.C.G. (2001) A fibre optic Bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology, 12(7): 805-809
Whyte, K.F., Gugger, M., Gould, G.A., Molloy, J., Wraith, P.K., Douglas, N.J. (1991) Accuracy of respiratory inductive plethysmograph in measuring tidal volume during sleep. Journal of Applied Physiology, 71(5): 1866-71
Ye, C.C., James, S.W., Tatam, R.P. (2000) Simultaneous temperature and bend sensing with long-period fiber gratings. Optics letters, 25(14): 1007-9


article language: Serbian
document type: Original Scientific Paper
DOI: 10.5937/tehnika1403453P
published in SCIndeks: 11/06/2015

Related records

No related records