- citati u SCIndeksu: 0
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:6
- preuzimanja u poslednjih 30 dana:1
|
|
2018, vol. 54, br. 2, str. 225-232
|
Dobijanje natrijuma iz aluminijum-oksida (glinice) dobijenog iz letećeg pepela (poletine) uz prisustvo koncentrovanog rastvora natrijum karbonata
Recovery of sodium from alumina-extracted fly ash using concentrated sodium carbonate solution
aNational Engineering Laboratory for Hydrometallurgy Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China + University of Chinese Academy of Science bNational Engineering Laboratory for Hydrometallurgy Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
e-adresa: shma@ipe.ac.cn
Projekat: Project by the National Basic Research Program, No. 2013CB632601 Project by the National Natural Science Foundation of China, No. 51274179.
Sažetak
U ovom radu je predstavljen novi metod za dobijanje natrijuma iz aluminijum oksida (glinice) dobijenog iz letećeg pepela (poletine) uz prisustvo koncentrovanog rastvora Na2 CO3. Natrijum koji je na efikasan način dobijen iz aluminijum oksida (glinice) dobijenog iz letećeg pepela (poletine) se uglavnom sastojao od NaCaHSiO4 . Faktori koji su uticali na postupak su sistematično ispitani, a zatim su ustanovljeni sledeći optimalni uslovi: temperatura reakcije = 180 °C, koncentracija Na2 CO3 = 170 g/L, odnos Č:T (čvrsto:tečno) = 10 mL/g, i vreme reakcije= 2h. Pod optimalnim uslovima, stopa dobijenog Na2 O iz proizvoda sa niskim sadržajem Na2 O od 1,02 wt%, iznosi 93,79%. Dobijeni rezultati ukazuju na to da je ovaj postupak efikasniji od postupka dobijanja natrijuma iz aluminijum oksida (glinice) dobijenog iz letećeg pepela (poletine) uz prisustvo razblaženog NaOH rastvora. Takođe se ovim postupkom izbeglo dobijanje razblaženog NaOH rastvora, i samim tim se smanjio utrošak energije prilikom postupka koncentrovanja i recikliranja natrijuma, u poređenju sa postupkom koji se zasniva na NaOH osnovi. Stoga, dobijanje natrijuma iz aluminijum oksida (glinice) dobijenog iz letećeg pepela (poletine) uz prisustvo koncentrovanog rastvora Na2CO3 predstavlja bolje rešenje za uptrebu u industriji. Ključne reči: Leteći pepeo; NaCaHSiO4.
Abstract
A novel method for the recovery of sodium from alumina-extracted fly ash (AEFA) using concentrated Na2CO3 solution is presented. Sodium was efficiently extracted from AEFA, which was mainly composed of NaCaHSiO4 . The factors influencing the process were systematically investigated, and the optimal conditions were determined to be: reaction temperature = 180 °C, Na2 CO3 concentration = 170 g/L, liquid-to-solid ratio = 10 mL/g, and reaction time = 2 h. Under optimal conditions, a low Na2 O content of 1.02 wt% of the products, with Na2 O extraction rate of 93.79% was achieved. The results indicated that this process was more effective than the recovery of sodium from AEFA using a dilute NaOH solution. Furthermore, this process avoided the production of a dilute NaOH solution, therefore lowering the energy consumption during the concentration and recycling of sodium, when compared with the NaOH-based route. Therefore, the recovery of sodium from AEFA using concentrated Na2CO3 solution is more suitable for use in industrial applications.
|
|
|
Reference
|
|
Andersen, M.D., Jakobsen, H.J., Skibsted, J. (2003) Incorporation of Aluminum in the Calcium Silicate Hydrate (C−S−H) of Hydrated Portland Cements: A High-Field 27 Al and 29 Si MAS NMR Investigation. Inorganic Chemistry, 42(7): 2280-2287
|
|
Bai, G., Qiao, Y., Shen, B., Chen, S. (2011) Thermal decomposition of coal fly ash by concentrated sulfuric acid and alumina extraction process based on it. Fuel Processing Technology, 92(6): 1213-1219
|
|
Bai, G., Teng, W., Wang, X., Qin, J., Xu, P., Li, P. (2010) Alkali desilicated coal fly ash as substitute of bauxite in lime-soda sintering process for aluminum production. Transactions of Nonferrous Metals Society of China, 20: s169-s175
|
|
Bi, S., Yu, H. (2006) Alumina production process. Beijing: Chemical Industry Press, in Chinese
|
|
Ding, J., Ma, S., Shen, S., Xie, Z., Zheng, S., Zhang, Y. (2017) Research and industrialization progress of recovering alumina from fly ash: A concise review. Waste Management, 60: 375-387
|
|
Ding, J., Ma, S., Zheng, S., Zhang, Y., Xie, Z., Shen, S., Liu, Z. (2016) Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process. Hydrometallurgy, 161: 58-64
|
|
Ding, J., Tang, Z., Ma, S., Wang, Y., Zheng, S., Zhang, Y., Shen, S., Xie, Z. (2016) A novel process for synthesis of tobermorite fiber from high-alumina fly ash. Cement and Concrete Composites, 65: 11-18
|
|
Faucon, P., Charpentier, T., Nonat, A., Petit, J. C. (1998) Triple-Quantum Two-Dimensional 27 Al Magic Angle Nuclear Magnetic Resonance Study of the Aluminum Incorporation in Calcium Silicate Hydrates. Journal of the American Chemical Society, 120(46): 12075-12082
|
|
Luo, F., Wei, C., Xue, B., Wang, S., Jiang, Y. (2013) Dynamic hydrothermal synthesis of Al-substituted 11 Å tobermorite from solid waste fly ash residue-extracted Al2O3. Research on Chemical Intermediates, 39(2): 693-705
|
|
Ministry of Geology and Mineral Resources of China (1993) Test method of groundwater quality. DZ/T 0064.49-93, (in Chinese)
|
|
Renaudin, G., Russias, J., Leroux, F., Cau-dit-Coumes, C., Frizon, F. (2009) Structural characterization of C-S-H and C-A-S-H samples-Part II: Local environment investigated by spectroscopic analyses. Journal of Solid State Chemistry, 182(12): 3320-3329
|
|
Seidel, A., Zimmels, Y. (1998) Mechanism and kinetics of aluminum and iron leaching from coal fly ash by sulfuric acid. Chemical Engineering Science, 53(22): 3835-3852
|
|
Sun, G.K., Young, J. F., Kirkpatrick, R. J. (2006) The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cement and Concrete Research, 36(1): 18-29
|
1
|
Sun, J.M., Chen, P. (2013) Resourcing Utilization of High Alumina Fly Ash. Advanced Materials Research, 652-654: 2570-2575
|
|
Viallis, H., Faucon, P., Petit, J-C., Nonat, A. (1999) J. Phys. Chem. B, 103(25); 5212-5219
|
|
Wang, Z., Ma, S., Zheng, S., Wang, X. (2017) J. Am. Ceram. Soc., 100(2); 792-799
|
|
Wang, Z., Ma, S., Tang, Z., Wang, X., Zheng, S. (2016) Effects of particle size and coating on decomposition of alumina-extracted residue from high-alumina fly ash. Journal of Hazardous Materials, 308: 253-263
|
|
Wu, C., Yu, H., Zhang, H. (2012) Extraction of aluminum by pressure acid-leaching method from coal fly ash. Transactions of Nonferrous Metals Society of China, 22(9): 2282-2288
|
|
Yang, Q., Ma, S., Zheng, S., Zhang, R. (2014) Recovery of alumina from circulating fluidized bed combustion Al-rich fly ash using mild hydrochemical process. Transactions of Nonferrous Metals Society of China, 24(4): 1187-1195
|
1
|
Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J.H., Ge, L.Q., Xia, M.S., Xi, Y.Q. (2015) A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141: 105-121
|
|
Zhang, R., Ma, S., Yang, Q., Zheng, S., Zhang, Y., Kim, N., Hong, S. (2011) Research on NaCaHSiO4 decomposition in sodium hydroxide solution. Hydrometallurgy, 108(3-4): 205-213
|
|
Zhang, R., Zheng, S., Ma, S., Zhang, Y. (2011) Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. Journal of Hazardous Materials, 189(3): 827-835
|
|
|
|