- citati u SCIndeksu: [2]
- citati u CrossRef-u:0
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:0
- preuzimanja u poslednjih 30 dana:0
|
|
2013, vol. 39, br. 3, str. 187-196
|
Prostorno lociranje sabijenih zona u zemlišnom profilu primenom GPS i GIS tehnologije
Spatial locating compacted zones in the soil profile using the GPS and GIS technology
aUniverzitet u Novom Sadu, Poljoprivredni fakultet, Srbija bLivona doo, Beograd
e-adresa: markok@polj.uns.ac.rs
Projekat: Unapređenje kvaliteta traktora i mobilnih sistema u cilju povećanja konkurentnosti, očuvanja zemljišta i životne sredine (MPNTR - 31046)
Sažetak
U radu je predstavljena tehnika merenja sabijenosti zemljišta uz geografsko određivanje lokacija mesta merenja. Merenje je obavljeno na parceli površine 0,77 ha, 250 m dužine. Predusev na parceli bio je merkantilni kukuruz proizveden konvencionalnom tehnologijom. Trenutna vlažnost zemljišta utvrđena na osnovu uzoraka uzetih sa parcele tokom merenja sabijenosti iznosila je u proseku 19,75±0,35%, a zapreminska masa 1,84±0,025 g/cm3. Na osnovu rezultat analize mehaničkog sastava po kojem peska ima 37,13%, praha 35, 29% i gline 27,58%, zemljište se svrstava u kategoriju prašasta glinovita ilovača. Merenje sabijenosti je obavljeno na 78 lokaliteta na parceli po tri ponavljanja za svaku lokaciju što ukupno daje 234 penetracije. Za merenje sabijenosti zemljišta korišćen je sofisticirani penetrometar poslednje generacije Penetrologger 6.00 firme Eijkelkamp sa konusnim vrhom površine osnove od 1 cm2 i uglom od 600. Uređaj u sebi ima integrisan GPS prijemik kojim se određuje pozicija merenja uz tačnost od 2-3,5 m zavisno od korekcionog signala. Za generaciju GIS mapa korišćeni su programski paketi Trimble Business Center, Manifold System i ArcMAP. Rezultati grafičkog prikazivanja ukazuju da u svim slojevima izuzev u sloju od 10 cm do 20 cm primetno je da postoji razlika u stepenu sabijanja 'leve strane" u odnosu na "desnu stranu" parcele. Generisane mape otpora konusa ukazuju da je u svim slojevima na "levoj strani" parcele primetno više tamne površine koja asocira visoke vrednosti CI. Podaci dobijeni u ovom istraživanju, primenjene rutine tokom prikupljanja, obrade i prikazivanja podataka, mogu poslužiti kao ozbiljna alatka za prepoznavanje specifičnih lokacija na parceli.
Abstract
This paper presents techniques for measuring soil compaction with determining the geographic location of the measurement site. The measurement was carried out on a plot of 0,77 ha, 250 m in length. Preceding crop on the land was a commercial maize produced by conventional technology . Current soil moisture determined on the basis of samples taken from the plots during compaction measurement was an average of 19,75±0,35% and density 1,84±0,025 g/cm3. Based on the analysis of the mechanical structure in which the sand is 37,13% , powder 35,29% and 27,58% clay, the soil is classified as silty clay loam. Measuring soil compaction is performed in 78 locations in the plot by three repetitions for each location for a total of 234 penetration. To measure soil compaction was used sophisticated penetrometer latest generation Penetrologger 6.00 Eijkelkamp company with conical tip of the base of 1 cm2 and an angle of 600 The device itself has a built- in GPS recepient which determines the position measurement with an accuracy of 2-3,5 m depending on the correction signal. For a generation of GIS maps were used software packages Trimble Business Center, Manifold System and ArcMap. The results indicate that graphical display of all layers except for the layer from 10 cm to 20 cm it is evident that there is a difference in the degree of compaction of 'left' versus 'right side' of the plot. Also, from variation soil compaction map it can be concluded that in all the layers of the 'left side' plots noticeably more dark surface that resembles the high value of CI. This can be regarded as expected because of an increase in the compactness of the soil is reduced by its inhomogeneity. The data obtained in this study, the application of routine in gathering, processing and presentation of data, can be used as a serious tool for the identification of the specific location on the parcel.
|
|
|
Reference
|
|
*** (2004) ASAE Standards: S313. 2: Soil cone penetrometer. St. Joseph, MI: ASAE, 50th ed
|
|
Akinci, I., Cakir, E., Topakci, M., Canakci, M., Inan, O. (2004) The effect of subsoiling on soil resistance and cotton yield. Soil and Tillage Research, 77(2): 203-210
|
|
Al-Adawi, S.S., Reeder, R.C. (1996) Compaction and Subsoiling Effects on Corn and Soybean Yields and Soil Physical Properties. Transactions of the ASAE, 39(5): 1641-1649
|
|
Batey, T., Mckenzie, D.C. (2006) Soil compaction: identification directly in the field. Soil Use and Management, 22(2): 123-131
|
1
|
Bayhan, Y., Kayisoglu, B., Gonulol, E. (2002) Effect of soil compaction on sunflower growth. Soil and Tillage Research, 68(1): 31-38
|
1
|
Benjamin, J.G., Nielsen, D.C., Vigil, M.F. (2003) Quantifying effects of soil conditions on plant growth and crop production. Geoderma, 116(1-2): 137-148
|
|
Carrara, M., Castrignanò, A., Comparetti, A., Febo, P., Orlando, S. (2007) Mapping of penetrometer resistance in relation to tractor traffic using multivariate geostatistics. Geoderma, 142(3-4): 294-307
|
|
Castrignanò, A., Maiorana, M., Fornaro, F., Lopez, N. (2002) 3D spatial variability of soil strength and its change over time in a durum wheat field in Southern Italy. Soil and Tillage Research, 65(1): 95-108
|
3
|
Chan, K.Y., Oates, A., Swan, A.D., Hayes, R.C., Dear, B.S., Peoples, M.B. (2006) Agronomic consequences of tractor wheel compaction on a clay soil. Soil and Tillage Research, 89(1): 13-21
|
1
|
Cui, K., Défossez, P., Richard, G. (2007) A new approach for modelling vertical stress distribution at the soil/tyre interface to predict the compaction of cultivated soils by using the PLAXIS code. Soil and Tillage Research, 95(1-2): 277-287
|
|
Dexter, A.R., Czyż, E.A., Gaţe, O.P. (2007) A method for prediction of soil penetration resistance. Soil and Tillage Research, 93(2): 412-419
|
|
Domsch, H., Ehlert, D., Giebel, A., Witzke, K., Boess, J. (2006) Evaluation of the soil penetration resistance along a transect to determine the loosening depth. Precision Agriculture, 7(5): 309-326
|
|
Filipovic, D., Husnjak, S., Kosutic, S., Gospodaric, Z. (2006) Effects of tillage systems on compaction and crop yield of Albic Luvisol in Croatia. Journal of Terramechanics, 43(2): 177-189
|
|
Gregory, A.S., Watts, C.W., Whalley, W.R., Kuan, H.L., Griffiths, B.S., Hallett, P.D., Whitmore, A.P. (2007) Physical resilience of soil to field compaction and the interactions with plant growth and microbial community structure. European Journal of Soil Science, 58(6): 1221-1232
|
1
|
Hall, H.E., Raper, R.L. (2005) Development and concept evaluation of an on-the-go soil strength measurement system. Transactions of the ASAE, 48(2): 469-477
|
1
|
Hassan, F.U., Ahmad, M., Ahmad, N., Abbasi, K.M. (2007) Effects of subsoil compaction on yield and yield attributes of wheat in the sub-humid region of Pakistan. Soil and Tillage Research, 96(1-2): 361-366
|
|
Keller, T., Arvidsson, J. (2006) Prevention of traffic-induced subsoil compaction in Sweden: Experiences from wheeling experiments. Archives of Agronomy and Soil Science, 52(2): 207-222
|
|
Kılıç, K., Özgöz, E., Akbaş, F. (2004) Assessment of spatial variability in penetration resistance as related to some soil physical properties of two fluvents in Turkey. Soil and Tillage Research, 76(1): 1-11
|
1
|
Kostić, M., Ponjičan, O., Radomirović, D., Malinović, N., Radulović, M. (2013) Merenje vučnih otpora na plugu sa standardnom i rešetkastom plužnom daskom na zemljištu tipa ritska crnica. Savremena poljoprivredna tehnika, vol. 39, br. 1, str. 21-32
|
|
Margaret, O. (2010) The theory of geostatistics. u: Geostatistical applications for precision agriculture, London: Springer, 7-32
|
|
Mouazen, A. (2003) Two-dimensional prediction of spatial variation in topsoil compaction of a sandy loam field-based on measured horizontal force of compaction sensor, cutting depth and moisture content. Soil and Tillage Research, 74(1): 91-102
|
|
Raper, R.L. (2005) Agricultural traffic impacts on soil. Journal of Terramechanics, 42(3-4): 259-280
|
|
Raper, R.L., Reeves, D.W., Shaw, J.N., van Santen, E., Mask, P.L. (2007) Benefits of site-specific subsoiling for cotton production in Coastal Plain soils. Soil and Tillage Research, 96(1-2): 174-181
|
|
Stalham, M. A., Allen, E. J., Rosenfeld, A. B., Herry, F. X. (2007) Effects of soil compaction in potato (Solanum tuberosum) crops. Journal of Agricultural Science, 145(04): 295
|
2
|
Sun, Y., Lammers, P.S., Ma, D. (2004) Evaluation of a combined penetrometer for simultaneous measurement of penetration resistance and soil water content. Journal of Plant Nutrition and Soil Science, 167(6): 745-751
|
|
Taylor, H.M., Roberson, G.M., Parker, J.J. (1966) Soil strength-root penetration relations for medium- to coarse-textured soil materials. Soil Science, 102(1): 18-22
|
|
Tekeste, M.Z., Raper, R.L., Tollner, E.W., Seymour, L. (2006) Optimal spatial sampling schemes for mapping soil strength on a Southeastern US soil. u: 2006 Portland, Oregon, July 9-12, 2006
|
|
|
|