- citations in SCIndeks: 0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:14
- full-text downloads in 30 days:12
|
|
2022, vol. 72, iss. 1, pp. 33-41
|
Hybrid filament wound composite tubes (aramide fiber/glass fiber)-epoxy resins and (carbon fibers/glass fiber)-epoxy resins: Volumetric, mechanical and hydraulic characteristics
Hibridne mokronamotane kompozitne cevi (aramidno vlakno/stakleno vlakno)-epoksi smola i (ugljenična vlakna/stakleno vlakno)-epoksi smola - zapreminske, mehaničke i hidraulične karakteristike
Abstract
In this paper volumetric, mechanical and hydraulic characteristics of filament wound composite one fiber tubes and hybrid tubes are presented. Composite hybrid materials, produced by filament winding technology, are categorized according to different ways of classification of hybrid materials. Four fibrous reinforcement agents (glass G600, polyamide aromatic K49, carbon T300 and carbon T800) and two impregnation agent systems (epoxy 0164 and epoxy L20) are used for manufacturing of filament wound tubes. Density, tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure of two filament wound glass fiber/epoxy resins tubes (as starting materials) and of twelve filament wound hybrid tubes are investigated. Four highest values of tensile strength and hydraulic burst pressure are of the next schedule: hybrid tubes mark G600-T800/L20 (the highest), hybrid tubes mark G600-T800/0164, hybrid tubes mark G600-T300/L20 and hybrid tubes mark G600-K49/L20. Also, a row of four highest specific tensile strength and highest specific hydraulic burst pressure begins with hybrid tubes mark G600-T800/L20, but the schedule of the next three tubes is different due to density of aramide composite materials (hybrid tubes mark G600-K49/L20, hybrid tubes mark G600-T800/0164 and hybrid tubes mark G600-K49/0164). All filament wound tubes (single fiber tubes and hybrid tubes) with epoxy L20 have a slightly lower density value but higher values of tensile strength, specific tensile strength, hydraulic burst pressure and specific hydraulic burst pressure than appropriate tubes impregnated with epoxy 0164. Obtained results in this testing indicate and emphasize the importance of advanced reinforcing agents (aramide roving and carbon fibers), of impregnating agents (epoxy resin systems) and of the density of hybrid tubes, especially with aramide roving.
Sažetak
U ovom radu prikazane su zapreminske, mehaničke i hidraulične karakteristike mokronamotanih kompozitnih cevi sa jednim vlaknom i hibridnih cevi. Kompozitni hibridni materijali, proizvedeni tehnologijom mokrog namotavanja, kategorizovani su prema različitim načinima klasifikovanja hibridnih materijala. Za proizvodnju mokronamotanih cevi korišćena su četiri sredstva za ojačanje (stakleno vlakno G600, poliamidno aromatsko vlakno K49, ugljenično vlakno T300 i ugljenično vlakno T800) i dva sistema za impregnaciju (epoksi 0164 i epoksi L20). Ispitane su gustina, zatezna čvrstoća, specifična zatezna čvrstoća, hidraulični pritisak prskanja i specifični hidraulični pritisak prskanja dve mokronamotane cevi stakleno vlakno/epoksi smole (kao osnovni materijali) i dvanaest mokronamotnih hibridnih cevi. Na osnovu eksperimentalno dobijenih rezultata, zaključeno je da su četiri najveća rezultata prekidne čvrstoće i hidrauličnog pritiska prskanja sledećeg redosleda: hibridna cev oznake G600-T800/L20 (najveća), hibridna cev oznake G600-T800/0164, hibridna cev oznake G600-T300/L20 i hibridna cev oznake G600-K49/L20. Niz od četiri najveće specifične zatezne čvrstoće i najveća specifična hidraulična pritisaka prskanja, takođe, počinje hibridnom cevi oznake G600-T800/L20, ali raspored sledeće tri cevi je drugačiji zbog gustine kompozitnih materijala sa aramidnim vlaknom (hibridna cev oznake G600-K49/L20, hibridna cev oznake G600-T800/0164 i hibridna cev oznake G600-K49/0164). Sve mokronamotane cevi (sa jednim vlaknom i hibridne cevi) impregnisane epoksi sistemom L20 imaju nešto manju vrednost gustine ali veće vrednosti zatezne čvrstoće, specifične zatezne čvrstoće, hidrauličnog pritiska prskanja i specifičnog hidrauličnog pritiska prskanja nego odgovarajuće cevi impregnisane epoksi sistemom 0164. Dobijeni rezultati u ovom ispitivanju ukazali su i naglasili značaj savremenih sredstava za ojačanje (aramidni roving i ugljenična vlakna), sredstava za impregnaciju (sistemi epoksi smole) i gustine hibridnih cevi, posebno onih sa aramidnim vlaknima.
|
|
|
References
|
|
*** (2012) Polymer composites. Wiley-VCH Verlag GmbH & Co. KGaA, Volume 1, First Edition
|
|
*** (2019) Durability and Life Prediction in Biocomposites, Fiber-Reinforced Composites and Hybrid Composites. in: Jawaid M; Tariq M; Saba N [ed.] Series in Composites Science and Engineering, Woodhead Publishing, ISBN 978-0-08-102290-0
|
|
Dave, R.S., Loos, A. C., eds. (2000) Processing of composites. Munich: Carl Hanser Verlag
|
|
Ercan, S. (2014) Finite element analysis of functionally hybridized carbon/glass composite shafts. Journal of Reinforced Plastics and Composites, 33(13): 1226-1236, first published online: February 20, Issue published: July 1
|
|
Faiz, A.M., Ridzuan, A., Nisar, L., Nisar, H. (2004) Hybrid Composites for Engineering Application. in: Ye L.; Mai Y.-W.; Su Z. [ed.] Composites Technologies for 2020, Proceedings of the Fourth Asian-Australasian Conference on Composite Materials (ACCM-4), University of Sydney, Australia6-9 July, 2004, Abington Hall, Abington: Woodhead Publishing Limited, 6-9
|
4
|
Groover, M.P. (2010) Fundamentals of modern manufacturing, materials, processes and systems. Hoboken: John Wiley and Sons Inc, ISBN 978-0470-467008
|
6
|
Kelly, A. (1988) Concise encyclopedia of composite materials. Oxford: Pergamon Press, ISBN 0-08-034718-9
|
|
Kumar, J.D., Kumar, N.R. (2019) Evaluation of mechanical properties and morphology of seawater aged carbon and glass fiber reinforced polymer hybrid composites. Composites Part B: Engineering, 174, 1 October, 106980
|
|
Kumar, J.D., Kumar, N.R. (2019) Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application. Composites Part B: Engineering, 168: 467-475, 1 July
|
|
Lokman, G. (2018) Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure: A comparative study. Composites Part B: Engineering, 153: 217-232, 15 November
|
1
|
Mundra, R.R. Hybrid Materials. https://prezi.com/svsgpadl_hvu/hybrid-composite-materials
|
|
Naik, N.K., Ramasimha, R., Arya, H., Prabhu, S.V., Shama, R.N. (2001) Impact response and damage tolerance characteristics of glass-carbon/epoxy hybrid composite plates. Composites Part B: Engineering, 32(7): 565-574, October
|
|
Naresh, K., Shankar, K., Rao, B.S., Velmurugan, R. (2016) Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites. Composites Part B: Engineering, 100: 125-135, 1 September
|
|
Nguyen, H., Zatar, W., Mutsuyoshi, H. (2017) Mechanical properties of hybrid polymer composite in Hybrid Polymer Composite Materials, Properties and Characterization. Elsevier Ltd, 83-113
|
|
Perov, B.V., Khoroshilova, I.P. (1995) Soviet Advanced Composites Technology Series: Polymer Matrix Composites. Chapman & Hall, book series, SACTS, volume 4, pp. 269-304
|
|
Prashanth, T.S., Sampath, K.P., Harshitha, R.P., Chandra, S.K. (2014) Processing and Flexural Strength of Carbon Fiber and Glass Fiber Reinforced Epoxy-Matrix Hybrid Composite. International Journal of Engineering Research & Technology (IJERT), Vol. 3 Issue 4: 2278-0181, April
|
1
|
Radulović, J. (2016) Development and characterization of non-standard extruded poly(vinyl chloride) product. Scientific Technical Review, vol. 66, br. 1, str. 40-48
|
|
Radulović, J. (2020) Hybrid filament-wound materials: Tensile characteristics of (aramide fiber/glass fiber)-epoxy resins composite and (carbon fibers/glass fiber)-epoxy resins composites. Scientific Technical Review, vol. 70, br. 1, str. 36-46
|
|
Sayer, M., Bektaş, N.B., Çallioğlu, H. (2010) Impact behavior of hybrid composite plates. Journal of Applied Polymer Science, 118(1): 580-587, Published online 21 May, in Wiley InterScience (www.interscience.wiley.com)
|
|
Shan, Y., Liao, K. (2001) Environmental fatigue of unidirectional glass-carbon fiber reinforced hybrid composite. Composites Part B: Engineering, 32(4): 355-363
|
1
|
Summerscales, J. Hybrid composites. https://www.slideserve.com/nevin/hybrid-composites
|
1
|
Zhang, J., Chaisombat, K., He, S., Wang, C.H. (2012) Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials & Design (1980-2015), 36: 75-80
|
|
|
|