- citations in SCIndeks: 0
- citations in CrossRef:0
- citations in Google Scholar:[
]
- visits in previous 30 days:4
- full-text downloads in 30 days:4
|
|
2014, vol. 55, iss. 4, pp. 378-381
|
Design of glass/phenolic ballistic composites by implementation of factorial experimental design
Dizajn staklo/fenolnih balistčkih kompozita primenom faktornog plana eksperimenta
Faculty of Technology, University 'Goce Delčev', Štip, Macedonia
Abstract
The purpose of the study is to assess the applicability of full factorial experimental design in predicting the ballistic strength of glass fiber/phenolic ballistic composites. In the study we used a number of ballistic composites (20 cm x 20 cm) with different thickness and fiber/resin ratio. The composites were made by an open mold high pressure, high-temperature compression of prepreg layers made of plain woven glass fiber fabric and polyvinyl butyral modified phenolic resin. The preparation of the composite experimental samples was done in accordance to 22 full factorial experimental design. The areal weight of composites is taken to be the first factor and the second - fiber/resin ratio. The first factor low and high levels are 2 kg/m2 and 9 kg/m2, respectfully and for the second factor - 80/20 and 50/50, respectfully. We used the first-order linear model with interaction to approximate the response i.e. the ballistic strength of the composites within the study domain (2 - 9) kg/m2 x (80/20 - 50/50) fiber/resin ratio. The influence of each individual factor to the response function is established, as well as the influence of the interaction of the two factors. We found out that the estimated first-degree regression equation with interaction gives a very good approximation of the experimental results of the ballistic strength of composites within the study domain.
Sažetak
Cilj istraživanja je proceniti aplikativnost punog faktornog dizajna eksperimenata u predviđanju balističke ćvrstoće staklena vlakna/fenolna smola balističkih kompozita. U eksperimentu je korišćeno više kompozita (20cm x 20cm) sa različnom debljinom i različnim odnosom vlakna/smola. Kompoziti su izrađeni u otvorenom kalupu presovanjem slojeva preprega na visokoj temperaturi. Prepreg je na bazi staklene tkanine platnenog prepletaja i fenolne smole modifikovane polivinil butiralom. Priprema uzoraka je bila u skladu 22 punog faktornog dizajna eksperimenata. Površinska masa kompozita je uzeta kao prvi faktot, a drugi - odnos vlakna/smola. Donje i gornje nivo prvog faktora su 2 kg/m2 and 9 kg/m2, a drugog - 80/20 i 50/50. Koristili smo linerni model prvog reda sa interakcijom da bi aproksimirali odziv t.j. balističku čvrstoću kompozita u istraživačkom domenu (2 - 9) kg/m2 x (80/20 - 50/50). Određen je uticaj svakog pojedinačnog faktora na funkciju odziva kao i uticaj interakcije među faktorima. Nadjeno je da proračunska regresiona jednačina prvog reda sa interakcijom daje veoma dobro predviđanje eksperimentalnih rezultata balističke čvrstoće kompozita u istraživačkom domenu.
|
|
|
References
|
|
Box, G.E., Hunter, J.S., Hunter, W.G. (2005) Statistics for experimenters: Design, innovation, and discovery. Wiley, 2nd Edition
|
|
Dimeski, D., Srebrenkoska, V. (2012) Dizajn i analiza na eksperimenti. Štip: Tehnološko-tehnički fakultet
|
|
Donovan, J.G., Kirkwood, B., Figucia, F. (2008) Development of lower cost ballistic protection. in: Technical Report Natick/TR-85/019L, Natick, MA: U.S. Army Natick RD&E Center
|
|
Jenq, S.T., Jing, H.-S., Chung, C. (1994) Predicting the ballistic limit for plain woven glass/epoxy composite laminate. International Journal of Impact Engineering, 15(4): 451-464
|
|
Kumar, S.K., Bhat, B.T. (1998) Response of composite laminates on impact of high velocity projectiles. Key Engineering Materials, 141-143, 337-348
|
1
|
Lin, L.C., Bhatnagar, A., Chang, H.W. (1990) Ballistic energy absorption of composites. in: SAMPE International Technical Conference, (22nd), Nov 6-8 1990, Proceedings, Boston, MA, 1-13
|
|
Naik, N.K., Shrirao, P., Reddy, B.C.K. (2005) Ballistic impact behaviour of woven fabric composites: Parametric studies. Materials Science and Engineering: A, 412(1-2): 104-116
|
|
Naik, N.K., Shrirao, P. (2004) Composite structures under ballistic impact. Composite Structures, 66(1-4): 579-590
|
|
NATO Standardization Agency (2003) STANAG 2920: Ballistic test method for personal armor materials and combat clothing. edition 31 July
|
|
Prevorsek, D.C., Chin, H.B. (1988) Development of a light weight spectra helmet: Phase I interim technical report from Allied Signal Inc. to U. S. Army. Natick, MA: Natick RD&E center, DAAK60-87-C-0089/D
|
|
Smith, J.C., Blandford, J.M., Schiefer, H.F. (1960) Stress-Strain Relationships. in Yarns Subjected to Rapid Impact Loading: Part VI: Velocities of Strain Waves Resulting from Impact. Textile Research Journal, 30(10): 752-760
|
|
Smith, J.C., Blandford, J.M., Towne, K.M. (1962) Stress-Strain Relationships in Yarns Subjected to Rapid Impact Loading: Part VIII: Shock Waves, Limiting Breaking Velocities, and Critical Velocities. Textile Research Journal, 32(1): 67-76
|
1
|
Song, J.W., Egglestone, G.T. (1987) Investigation of the PVB/PF ratios on the crosslinking and ballistic properties in glass and aramid fiber laminate systems. in: SAMPE International Technical Conference, (19th), Oct 13-15, Proceedings, 108-119
|
|
Thomas, E. (2011) Opportunities in protection materials science and technology for future army application. National Academy Press
|
|
Thomas, T.S. (1990) Facets of a lightweight armor system design. in: SAMPE International Technical Conference, (22nd), Nov 6-8 1990, Proceedings, Boston, MA, 304-318
|
|
Wen, H.M. (2001) Penetration and perforation of thick FRP laminates. Composites Science and Technology, 61(8): 1163-1172
|
|
|
|