Akcije

Journal of Mining and Metallurgy B: Metallurgy
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [3]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 4 od 21  
Back povratak na rezultate
2017, vol. 53, br. 1, str. 47-52
Characterization of the expanded austenite developed on AISI 316 LM steel by plasma nitriding
(naslov ne postoji na srpskom)
aLaboratoire de Technologie des Matériaux, Faculté de Génie Mécanique et Génie des Procédés, Algeria
bInstitut Jean Lamour (IJL), Université de Lorraine, Nancy Cedex, France

e-adresamkeddam@usthb.dz
Ključne reči: Plasma nitriding; Expanded austenite; Kinetics; Mechanical model; Stress; Strain
Sažetak
(ne postoji na srpskom)
AISI 316 LM samples were plasma nitrided at a temperature of 380°C for different times between 0.5 and 8 h in a 85%N2 - 15% H2 gas mixture. Different experimental techniques such as: optical microscopy (OM), X- ray diffraction (XRD ) and glow discharge optical emission spectroscopy (GDOES) were used to characterize the expanded austenite layer formed at the surface of AISI 316 LM stainless steel. The microscopical observations revealed the presence of the expanded austenite with a mean layer thickness between 1.90 and 4.31 μm. The growth kinetics of expanded austenite was also investigated. In addition, both the compressive stresses in the expanded austenite layer and the compositional strains were estimated by means of a simple mechanical model based on the XRD results.
Reference
Bacci, T., Borgioli, F., Galvanetto, E., Pradelli, G. (2001) Glow- discharge nitriding of sintered stainless steels. Surf. Coat. Technol, 251-356; 139
Baddoo, N.R. (2008) Stainless steel in construction: A review of research, applications, challenges and opportunities. Journal of Constructional Steel Research, 64(11): 1199-1206
Bell, T., Sun, Y. (2002) Heat Treat. Met., 57-64; 29
Bell, T. (2002) Surface engineering of austenitic stainless steel. Surface Engineering, 18(6): 415-422
Boillot, P., Peultier, J. (2014) Use of Stainless Steels in the Industry: Recent and Future Developments. Procedia Engineering, 83: 309-321
Borgioli, F., Fossati, A., Galvanetto, E., Bacci, T. (2005) Surf. Coat. Technol, 2474-2480; 200
Cindra, F.M., Bastos, I.N., Baggio-Saitovitch, E., Sánchez, D.R. (2012) Characterization of oxides of stainless steel UNS S30400 formed in offshore environment. Corrosion Science, 55: 34-39
Corujeira, G.S., Li, X., Dong, H. (2012) Dry Sliding Wear of Active Screen Plasma Carburised Austenitic Stainless Steel. Tribology Letters, 45(1): 153-160
Corujeira, G.S., Dong, H. (2011) EBSD and AFM observations of the microstructural changes induced by low temperature plasma carburising on AISI 316. Applied Surface Science, 258(1): 608-613
Czerwiec, T., He, H., Marcos, G., Thiriet, T., Weber, S., Michel, H. (2009) Fundamental and Innovations in Plasma Assisted Diffusion of Nitrogen and Carbon in Austenitic Stainless Steels and Related Alloys. Plasma Processes and Polymers, 6(6-7): 401-409
de Sousa, R.R.M., de Araújo, F.O., Gontijo, L.C., da Costa, J.A.P., Alves, C. (2012) Cathodic cage plasma nitriding (CCPN) of austenitic stainless steel (AISI 316): Influence of the different ratios of the (N2/H2) on the nitrided layers properties. Vacuum, 86(12): 2048-2053
Devaraju, A., Elaya, P.A., Alphonsa, J., Kailas, S.V., Venugopal, S. (2012) Sliding wear behavior of plasma nitrided Austenitic Stainless Steel Type AISI 316LN in the temperature range from 25 to 400°C at 10−4bar. Wear, 288: 17-26
Dong, H. (2010) S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. International Materials Reviews, 55(2): 65-98
Feugeas, J., Rico, L., Nosei, L., Gómez, B., Bemporad, E., Lesage, J., Ferrón, J. (2010) Austenite modification of AISI 316L SS by pulsed nitrogen ion beams generated in dense plasma focus discharges. Surface and Coatings Technology, 204(8): 1193-1199
Fewell, M.P., Mitchell, D.R.G., Priest, J.M., Short, K.T., Collins, G.A. (2000) Surf. Coat. Technol, 300-306; 131
García, M.J., Milanese, M., Piccoli, M., Moroso, R., Niedbalski, J., Nosei, L., Bürgi, J., Bemporad, E., Feugeas, J. (2013) Stability of expanded austenite, generated by ion carburizing and ion nitriding of AISI 316L SS, under high temperature and high energy pulsed ion beam irradiation. Surface and Coatings Technology, 218: 142-151
Hauk, V. (1997) Structural and Residual stress Analysis by Nondestructive Methods. Amsterdam: Elsevier Science B.V
Hudis, M. (1973) J Appl. Phys., 1489-1496; 44
Keddam, M., Marcos, G., Thiriet, T., Czerwiec, T., Michel, H. (2013) Microstructural Characterization of the expanded austenite formed on the plasma nitrided AISI 316 L steel. Matériaux & Techniques, 101(2): 204
Kliauga, A.M., Pohl, M. (1998) Surf. Coat. Technol, 1205-1210; 98
Kožuh, S., Vrsalović, L., Gojić, M., Gudić, S., Kosec, B. (2016) Comparison of the corrosion behavior and surface morphology of NiTi alloy and stainless steels in sodium chloride solution. Journal of Mining and Metallurgy B: Metallurgy, vol. 52, br. 1, str. 53-61
Kumar, S., Bladwin, M.J., Fewell, M.P., Haydon, S.C., Short, K.T., Collins, G.A., Tendys, J. (2000) Surf. Coat. Technol, 29-35; 123
Li, C.X., Bell, T. (2004) Corros. Sci., 1527-1547; 46
Li, Y., Wang, Z., Wang, L. (2014) Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Applied Surface Science, 298: 243-250
Manova, D., Mandl, S., Neumann, H., Rauschenbach, B. (2006) Surf. Coat. Technol, 6563-6567; 200
Martinavicius, A., Abrasonis, G., Scheinost, A.C., Danoix, R., Danoix, F., Stinville, J.C., Talut, G., Templier, C., Liedke, O., Gemming, S., Möller, W. (2012) Acta Materialia, 4065-4076; 60
Menthe, E., Bulak, U.A., Olfe, J., Zimmermann, A., Rie, K.T. (2000) Surf. Coat. Technol, 259-263; 133-134
Moskalioviene, T., Galdikas, A., Rivière, J.P., Pichon, L. (2011) Surf. Coat. Technol, 3301-3306; 205
Negm, N.Z. (2006) A study on rf plasma nitriding at a constant power in different H2-N2 mixtures at different temperatures. Materials Science and Engineering: B, 129(1-3): 207-210
Nosei, L., Avalos, M., Gómez, B.J., Nachez, L., Feugeas, J. (2004) Stability under temperature of expanded austenite developed on stainless steel AISI 316L by ion nitriding. Thin Solid Films, 468(1-2): 134-141
Picard, S., Memet, J., Sabot, R., Grosseau-Poussard, J., Rivière, J., Meilland, R. (2001) Corrosion behaviour, microhardness and surface characterisation of low energy, high current ion implanted austenitic stainless steel. Materials Science and Engineering: A, 303(1-2): 163-172
Rejevac, V., Hoelzel, M., Danilkin, S.A., Hoser, A., Fuess, H. (2004) J Phys. Condens. Matter, 16, 2609-2616
Shewmon, P. (1999) Diffusion in solids. USA: Minerals, Metals and Materials Society
Singh, G.P., Alphonsa, J., Barhai, P.K., Rayjada, P.A., Raole, P.M., Mukherjee, S. (2006) Surf. Coat. Technol, 5807-5811; 200
Sun, Y., Li, X. Y., Bell, T. (1999) Journal of Materials Science, 34(19): 4793-4802
Teklu, A., Ledbetter, H., Kim, S., Boatner, L.A., Mcguire, M., Keppens, V. (2004) Metall. Mater. Trans. A, 3149-3154; 35
Wang, L., Ji, S., Sun, J. (2006) Surf. Coat. Technol, 5067-5070; 200
Zeng, D., Yang, S., Xiang, Z.D. (2012) Formation of hard surface layer on austenitic stainless steels via simultaneous chromising and nitriding by pack cementation process. Applied Surface Science, 258(12): 5175-5178
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JMMB151115026K
objavljen u SCIndeksu: 25.01.2017.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka