Metrika članka

  • citati u SCindeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[=>]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:3
članak: 2 od 220  
Back povratak na rezultate
FME Transactions
2020, vol. 48, br. 1, str. 31-45
jezik rada: engleski
vrsta rada: neklasifikovan
objavljeno: 04/05/2020
doi: 10.5937/fmet2001031O
Creative Commons License 4.0
Projektovanje veličine para cilindričnih pužnih zupčanika
aTexas Southern University, Department of Industrial Technology Houston, Texas, USA
bNigerian Defence Academy, Mechanical Engineering Department, Kaduna, Nigeria

e-adresa: osakueee@tsu.edu

Projekat

The authors gratefully acknowledge that this study was supported in parts with funds from the College of Science, Engineering, and Technology (COSET) Research Fund and the University Faculty Development Fund of Texas Southern University, Houston, Texas

Sažetak

Prikazan je metod za projektovanje veličine para cilindričnih pužnih zupčanika koji daje procenu inicijalnih vrednosti normalnog modula. Izvedeni su izrazi za prečnik koraka prenosnika kod integralnog i školjkastog puža kao i za širinu zupčanika i dužinu navoja kod puža. Prikazan je pokušaj predikcije otpornosti na zaribavanje u zavisnosti od stepena kontakta materijala od bronze. Data su četiri zadataka za projektovanje veličine para cilindričnih pužnih zupčanika primenom opisanog metoda i izvršeno je poređenje sa rezultatima dobijenim drugim metodama. Rezultati dobijeni u prva tri zadatka pokazali su izvrsnost u slaganju sa rešenjima koje daje metod Udruženja američkih proizvođača prenosnika. Rezultati dobijeni u četvrtom zadatku se neznatno razlikuju od onih koje propisuje DIN3999. Prema tome, izgleda da smo razvili sistematski, pouzdan i naučno zasnovan metod za projektovanje veličine para cilindričnih pužnih zupčanika.

Ključne reči

Reference

*** (2018) RoyMech: Gears-gear efficiency. RoyMech, www.roymech.co.uk/Useful_Tables/Drive/Gear_Efficie ncy.html, (Accessed August, 2018)
*** Gearmotion: Advantages of worm gears. Syracuse, NY, USA, https://gearmotions.com/advantages-of-worm-gears/, (September 2018)
*** Review of plane stress and plane strain elasticity. http://w3.uacg.bg/UACEG_site/acadstaff/userfi les/study_bg_162_L_02_Plane_Elsticity.pdf, (September 2018)
Berezovsky, Y., Chernilevsky, D., Petrov, M. (1988) Machine design. Moscow: MIR Pub
Bhandari, V.B. (2013) Introduction to machine design. New Delhi: McGraw-Hill
Bhandari, V.B. (2010) Design of machine elements. New Delhi: McGraw-Hill, 3rd ed
Budynas, R.G., Nissbett, J.K. (2010) Shigley's mechanical engineering design. McGraw-Hill Education, 9th ed
Chang, W.R., Ling, F.F. (1992) Normal impact model of rough surfaces. Journal of Tribology, 114(3), 439-447
Cherlivevsky, D., Lavrova, E., Romanov, V. (1984) Mechanics for engineers. Moscow: MIR
Chernilevsky, D. (1990) A practical course in machine design. Moscow: MIR
Childs, P.R.N. (2014) Worm gears: Mechanical design engineering handbook. Boston: Butterworth-Heinemann
Collins, J.A., Busby, H., Staab, G.H. (2010) Mechanical design of machine elements and machines: A failure prevention perspective. New York: John Wiley & Sons, 2nd ed
Dobrovolsky, V., Zablonsky, K., Mak, S., Radchik, A., Erlikh, L. (1965) Machine elements. Moscow
Dudley, D.W. (2004) Handbook of practical Gear design. CRC Press
Errichello, R.L., Muller, J. How to analyze gear failures. https://www.researchgate.net/publication/225602159_How_to_analyze_gear_failures, September 2018
Gope, P.C. (2014) Machine design: Fundamentals and applications. Delhi: PHI Learning
Ishibashi, A., Hoyashita, S., Yoshino, H. (1984) Studies on upper limit of surface durability of phosphor bronze. Bulletin of JSME, 27(225), 592-600
Juvinall, R.C., Marshek, K.M. (2017) Juninall's fundamentals of machine component design. Singapore: SI Wiley
KHK Calculations of gear dimensions. Saitama-ken, Japan: Kohara Gear Industry Co., Ltd, https://khkgears.net/new/gear_knowledge/gear_technical_reference/calculation_gear_dimensi ons.html, September, 2018
Khurmi, R.S., Gupta, J.K. (2015) A textbook of machine design. New Delhi: Eurasia Pub. House, p. 1104
KISSsoft (2003) Bevel rating along AGMA 2003 in KISSsoft
Kocak, S. (2017) An innovative design for a ball worm gear mechanism. International Journal of Engineering Technologies, 3(4), 230-234
Maitra, G.M. (2013) Fundamentals of toothed gearing: Handbook of Gear design. Delhi: McGraw-Hill, 2nd ed
MITCalc (2018) Worm_Gear.xls. http://www.mitcalc.com/doc/gear4/help/en/gear4.htm, (Accessed September 2018)
Mott, R.L. (2006) Machine elements in mechanical design. Singapore: Prentice Hall, 4th Edition
Murray, M. (2010) Total system efficiency, power transmission engineering. www.powertransmission.com, p. 16-23
National Bronze Properties of phosphor bronze. www.nationalbronze.com/C90700_Gear_Bronze.php
Norton, R.L. (2000) Machine design: An integrated approach. Upper Saddle River, NJ: Prentice Hall, 2nd. ed
Osakue, E.E., Anetor, L. (2018) Contact stress capacity models for cylindrical worm gears. Australian Journal of Mechanical Engineering (AJME), Manuscript No. EATJ-D-18-00701
Osakue, E.E., Anetor, L. (2018) A comparative study of contact stress from different standards for some theoretical straight bevel Gear pairs. International Journal of Research in Engineering and Technology, Vol. 07, Issue 8
Osakue, E.E. (2016) Simplified spur gear design. u: International Mechanical Engineering Congress and Exposition 2016 IMECE, November 11-17, Proceedings, Phoenix Arizona, USA, Paper Number IMECE2016-65426
Osakue, E.E., Anetor, L. (2018) Comparing contact stress estimates of some straight bevel gears with ISO 10300 standards. u: International Mechanical Engineering Congress and Exposition 2016 IMECE, November 9-15, Pittsburgh, Pennsylvania, USA, Proceedings, Paper Number IMECE2018-86573
Rowe, W. (1979) Elements of metal working theory. London: Edward Arnold, pp. 5 -6, 17
Schmid, S.R., Hamrock, B.J., Jacobson, B.O. (2014) Fundamentals of machine elements. New York: CRC Press, 3rd ed
Shigley, J.E., Mischke, C.R. (1996) Standard handbook of machine design. McGraw-Hill, 2nd Edition
Shipley, E.E. (1967) Gear f ailures: How to recognize them, what causes them, and how to avoid them. https://www.xtek.com/wp-content/uploads/2018/05/xtek-gear-failures.pdf
Sundararajan, G. (1990) The energy absorbed during the oblique impact of a hard ball against ductile target materials. International Journal of Impact Engineering, 9(3), 343-358
Walsh, R.A. (2000) Electromechanical design handbook. New York: McGraw-Hill, 3rd ed., p. 8.78
Winsmith (1980) The speed reducer book: A practical guide to enclosed Gear drives. Peerless-Winsmith