Akcije

Serbian Journal of Electrical Engineering
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 8 od 170  
Back povratak na rezultate
2020, vol. 17, br. 1, str. 1-20
Study of metrological characteristics of low-cost digital temperature sensors for greenhouse conditions
(naslov ne postoji na srpskom)
aSHEE 'Donetsk National Technical University' of the Ministry of Education and Science of Ukraine, Pokrovsk, Ukraine
bSHEE 'Pryazovskyi State Technical University' of the Ministry of Education and Science of Ukraine, Mariupol, Ukraine
cDonbass State Engineering Academy of the Ministry of Education and Science of Ukraine, Kramatorsk, Ukraine

e-adresaoleksandr.vovna@donntu.edu.ua, ivan.laktionov@donntu.edu.ua, koifman_o_o@pstu.edu, stashkevich_dgma@ukr.net, vladyslav.lebediev@donntu.edu.ua
Ključne reči: Sensor; Deviation; Temperature; Greenhouse
Sažetak
(ne postoji na srpskom)
The article focuses on the relevant scientific and applied problem of assessing and analyzing the metrological characteristics of available digital temperature sensors for greenhouse conditions. The hardware and software implementation of the microprocessor system for obtaining calibration characteristics and evaluating the accuracy and performance of temperature sensors for the physical media under greenhouse conditions is studied. A particular type of linear calibration equation for the temperature sensors under study is established. The values of systematic absolute measurement deviations of temperature sensors DS18B20, SHT11, SHT21, BMP180, BME280 and DHT22 are experimentally obtained. Recommendations on improving the accuracy of temperature information and temperature measuring systems under greenhouse conditions are given. The perspective areas of the research on metrological provision of modern means of automatic monitoring and temperature control in industrial greenhouses are substantiated.
Reference
*** (2008) ANSI/ASAE EP406.4: Heating, ventilating and cooling greenhouses. Michigan: American Society of Agricultural and Biological Engineers, pp. 1-10
Ben, A.R., Bouadila, S., Mami, A. (2018) Development of a fuzzy logic controller applied to an agricultural greenhouse experimentally validated. Applied Thermal Engineering, 141: 798-810
Bogdan, M. (2016) How to use the DHT22 Sensor for measuring temperature and humidity with the arduino board. Acta Uiversitatis Cibiniensis -Technical Series, 68(1): 22-25
Both, A.J., Benjamin, L., Franklin, J., Holroyd, G., Incoll, L.D., Lefsrud, M.G., Pitkin, G. (2015) Guidelines for measuring and reporting environmental parameters for experiments in greenhouses. Plant Methods, Vol. 11, No. 43, pp. 1 - 18
Cosoli, G., Scalise, L. (2018) Characteristics of wearable devices: A systematic review. u: Sensors -Proceedings of the 4th National Conference on Sensors, Catania, Italy, February, pp. 377 - 387
Devaraju, J.T., Suhas, K.R., Mohana, H.K., Patil, V.A. (2015) Wireless portable microcontroller based weather monitoring station. Measurement, 76: 189-200
Hojaiji, H., Kalantarian, H., Bui, A.A.T., King, C.E., Sarrafzadeh, M. (2017) Temperature and humidity calibration of a low-cost wireless dust sensor for real. u: Time Monitoring: Proceedings of the IEEE Sensors Applications Symposium (SAS), Glassboro, USA, March, pp. 1 - 6
Ito, K., Hara, Y. (2017) Multipoint-measurement multipoint-heating greenhouse temperature control with wooden pellet fuel using an adaptive model predictive control approach with a genetic algorithm. u: Proceedings of the 25 th Mediterranean Conference on Control and Automation (MED), Valletta, Malta, July, pp. 54 - 59
Laktionov, I., Vovna, O., Zori, A. (2017) Concept of low cost computerized measuring system for microclimate parameters of greenhouses. Bulgarian Journal of Agricultural Science, Vol. 23, No. 4, pp. 668 - 673
Laktionov, I.S., Vovna, O.V., Zori, A.A., Lebedev, V.A. (2018) Results of simulation and physical modeling of the computerized monitoring and control system for greenhouse microclimate parameters. International Journal on Smart Sensing and Intelligent Systems, Vol. 11, No.1, pp. 1 - 15
Laktionov, I.S., Vovna, O.V., Zori, A.A. (2017) Planning of remote experimental research on effects of greenhouse microclimate parameters on vegetable crop-producing. International Journal on Smart Sensing and Intelligent Systems, Vol. 10, No. 4, pp. 845 - 862
Lin, Z. (2013) Design and simulation of the intelligent control of the greenhouse temperature. Applied Mechanics and Materials, 423: 2851-2854
Liu, Z.J. (2013) Multi point temperature measurement system based on DS18B20. Advanced Materials Research, 756-759: 556-559
Matula, S., Báťková, K., Legese, W.L. (2016) Laboratory performance of five selected soil moisture sensors applying factory and own calibration equations for two soil media of different bulk density and salinity levels. Sensors, 16(11): 1 - 22
Revathi, S., Sivakumaran, N. (2016) Fuzzy based temperature control of greenhouse. IFAC-PapersOnLine, 49(1): 549-554
Shenan, Z.F., Marhoon, A.F., Jasim, A.A. (2017) IoT based intelligent greenhouse monitoring and control system. Journal for Engineering Sciences, 17(1): 61-69
Shirsath, D.O., Kamble, P., Mane, R., Kolapr, A.S. (2017) More: IoT based smart greenhouse automation using Arduino. International Journal of Innovative Research in Computer Science & Technology, Vol. 5, No. 2, March , pp. 234 - 238
Spring, A.M., Docherty, K.M., Domingue, K.D., Kerber, T.V., Mooney, M.M., Lemmer, K.M. (2018) A method for collecting atmospheric microbial samples from set altitudes for use with next-generation sequencing techniques to characterize communities. Air, Soil and Water Research, Vol. 11, No. 1, pp. 1 - 12
Sugriwan, I., Soesanto, O. (2017) Development of TGS2611 methane sensor and SHT11 humidity and temperature sensor for measuring greenhouse gas on peatlands in south Kalimantan, Indonesia. Journal of Physics: Conference Series, Vol. 853, May, pp. 1 - 7
Tartakovskiy, D.F., Yastrebov, A.S. (2001) Metrology, standardization and technical means of measurement. Moscow: Vyisshaya shkol, (in Russian)
Xiong, F. (2015) Wireless temperature sensor network based on DS18B20, CC2420, MCU AT89S52. u: Proceedings of the IEEE International Conference on Communication Software and Networks (ICCSN), Chengdu, China, June, pp. 294 - 298
Zagade, S.U., Kawitkar, R.S. (2012) Advanced greenhouse using hybrid wireless technologies. International Journal of Advanced Research in Computer Science and Electronics Engineering, 1(4): 31-34
Zhang, Q., Guo, T., Bao, A. (2010) Design of real-time temperature and humidity measurement system based on SHT21 sensor. u: Proceedings of the International Conference on Computer Application and System Modeling (ICCASM 2010), Taiyuan, China, October, pp. 32 - 35
Zhu, X., An, W., Chang, L., Zhenwei, L., Zeyuan, L. (2018) Research of digital temperature measurement system in vacuum thermal test based on DS18B20. u: Proceedings of the International Conference on Smart Materials, Intelligent Manufacturing and Automation (SMIMA2018), Nanjing, China, May, pp. 1 - 6
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.2298/SJEE2001001V
objavljen u SCIndeksu: 06.04.2020.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka