Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:7

Sadržaj

članak: 4 od 14  
Back povratak na rezultate
2018, vol. 59, br. 4, str. 495-500
Predikcija termalnog komfora u otvorenim urbanim površinama
Univerzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Fakultet tehničkih nauka

e-adresasrdjanjovic2016@hotmail.com
Ključne reči: termalni komfor; urbana površina; neuronska mreža; mikroklima
Sažetak
Termalna osećajnost od strane posetilaca i turista je važan indicator za urbane površine na osnovi fizioloških, psiholoških i uslova ponašanja turista. Prema tome u ovom radu je analiziran termalni komfor posetilaca i turista u otvorednim urbanim površinama. Za tu svrhu su korišćeni fizički podaci kao anketa među turistima i posetiocima. Kako bi bili postignuti optimalni uslovi u otvorenim urbanism površinama potrebno je uraditi predikciju termalnog komfora u tim površinama. Rezultati poredikcije se mogu potom koristiti za optimalni aranžman u otvorenim urbanism površinama. Rezultati su dobijeni pomoću tri metode. Te metode su bazirane na osnovu veštačke inteligencije.
Reference
Ali, S.B., Patnaik, S. (2018) Thermal comfort in urban open spaces: Objective assessment and subjective perception study in tropical city of Bhopal, India. Urban Climate, 24: 954-967
Ali-Toudert, F., Mayer, H. (2007) Effects of asymmetry, galleries, overhanging façades and vegetation on thermal comfort in urban street canyons. Solar Energy, 81(6): 742-754
Bourbia, F., Awbi, H. (2004) Building cluster and shading in urban canyon for hot dry climate. Renewable Energy, 29(2): 249-262
Cena, K., de Dear, R. (2001) Thermal comfort and behavioural strategies in office buildings located in a hot-arid climate. Journal of Thermal Biology, 26(4-5): 409-414
Chen, L., Ng, E. (2012) Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29(2): 118-125
Cheng, V., Ng, E., Chan, C., Givoni, B. (2012) Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. International Journal of Biometeorology, 56(1): 43-56
Esen, H., Inalli, M., Sengur, A., Esen, M. (2008) Modeling a ground-coupled heat pump system by a support vector machine. Renewable Energy, 33(8): 1814-1823
Esen, H., Ozgen, F., Esen, M., Sengur, A. (2009) Modelling of a new solar air heater through least-squares support vector machines. Expert Systems with Applications, 36(7): 10673-10682
Esen, H., Inalli, M., Sengur, A., Esen, M. (2008) Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system. Energy and Buildings, 40(6): 1074-1083
Esen, H., Inalli, M., Sengur, A., Esen, M. (2008) Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing. International Journal of Thermal Sciences, 47(4): 431-441
Esen, H., Inalli, M., Sengur, A., Esen, M. (2008) Performance prediction of a ground-coupled heat pump system using artificial neural networks. Expert Systems with Applications, 35(4): 1940-1948
Esen, H., Ozgen, F., Esen, M., Sengur, A. (2009) Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Systems with Applications, 36(8): 11240-11248
Griefahn, B., Künemund, C. (2001) The effects of gender, age, and fatigue on susceptibility to draft discomfort. Journal of Thermal Biology, 26(4-5): 395-400
Hirashima, S.Q.da S., Katzschner, A., Ferreira, D.G., de Assis, E.S., Katzschner, L. (2018) Thermal comfort comparison and evaluation in different climates. Urban Climate, 23: 219-230
Hornik, K. (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2): 251-257
Huang, G.B., Zhu, Q.Y., Siew, C.K. (2004) Extreme learning machine: A new learning scheme of feedforward neural networks. u: International Joint Conference on Neural Networks, 2, 985-990
Humphreys, M.A. (1977) Clothing and the outdoor microclimate in summer. Building and Environment, 12(3): 137-142
Indraganti, M., Rao, K.D. (2010) Effect of age, gender, economic group and tenure on thermal comfort: A field study in residential buildings in hot and dry climate with seasonal variations. Energy and Buildings, 42(3): 273-281
Karakounos, I., Dimoudi, A., Zoras, S. (2018) The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy and Buildings, 158: 1266-1274
Karjalainen, S. (2007) Gender differences in thermal comfort and use of thermostats in everyday thermal environments. Building and Environment, 42(4): 1594-1603
Lamarca, C., Qüense, J., Henríquez, C. (2018) Thermal comfort and urban canyons morphology in coastal temperate climate, Concepción, Chile. Urban Climate, 23: 159-172
Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. M., Petković, D. (2017) Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique. Journal of Intelligent Manufacturing, 1-11
Matzarakis, A., Rutz, F., Mayer, H. (2007) Modelling radiation fluxes in simple and complex environments-application of the RayMan model. International Journal of Biometeorology, 51(4): 323-334
Mohammadhassani, M., Nezamabadi-pour, H., Suhatril, M., shariati Mahdi (2014) An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of highstrength concrete beams without stirrups. Smart Structures and Systems, 14(5): 785-809
Nagashima, K., Yoda, T., Yagishita, T., Taniguchi, A., Hosono, T., Kanosue, K. (2002) Thermal regulation and comfort during a mild-cold exposure in young Japanese women complaining of unusual coldness. Journal of Applied Physiology, 92(3): 1029-1035
Nakano, J., Tanabe, S., Kimura, K. (2002) Differences in perception of indoor environment between Japanese and non-Japanese workers. Energy and Buildings, 34(6): 615-621
Parsons, K.C. (2014) Human thermal environments: The effects of hot, moderate, and old 8 on human health, comfort, and performance. CRC Press, p. 635-657
Rijal, H.B. (2012) Thermal adaptation outdoors and the effect of wind on thermal comfort. u: Ventilating Cities, p. 33-58
Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M., Petkovic, D. (2016) Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength. Steel and Composite Structures, 21(3): 679-688
Singh, M.K., Mahapatra, S., Atreya, S.K. (2011) Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 88(7): 2420-2428
Soebarto, V., Bennetts, H. (2014) Thermal comfort and occupant responses during summer in a low to middle income housing development in South Australia. Building and Environment, 75: 19-29
Taleghani, M., Kleerekoper, L., Tenpierik, M., van den Dobbelsteen, A. (2015) Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 83: 65-78
Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M., Ibrahim, Z. (2014) Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel and Composite Structures, 17(5): 623-639
Villadiego, K., Velay-Dabat, M.A. (2014) Outdoor thermal comfort in a hot and humid climate of Colombia: A field study in Barranquilla. Building and Environment, 75: 142-152
Wang, D., Huang, G.B. (2005) Protein sequence classification using extreme learning machine. u: Neural Networks, International Joint Conference, Proceedings, 3, 1406-1411
Watanabe, S., Nagano, K., Ishii, J., Horikoshi, T. (2014) Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Building and Environment, 82: 556-565
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/zasmat1804495G
objavljen u SCIndeksu: 13.12.2018.
Creative Commons License 4.0