Akcije

Kragujevac Journal of Science
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 7 od 74  
Back povratak na rezultate
2018, br. 40, str. 217-226
Heavy metal tolerance and removal efficiency of the Rhodotorula mucilaginosa and Saccharomyces boulardii planktonic cells and biofilm
(naslov ne postoji na srpskom)
Univerzitet u Kragujevcu, Prirodno-matematički fakultet, Institut za biologiju i ekologiju, Smer Biologija - ekologija, Srbija

e-adresaivana@kg.ac.rs
Projekat:
Preklinička ispitivanja bioaktivnih supstanci (MPNTR - 41010)

Sažetak
(ne postoji na srpskom)
The impact of heavy metals, cadmium (Cd2+), zinc (Zn2+) and nickel (Ni2+) on planktonic cells and biofilm of Rhodotorula mucilaginosa and Saccharomyces boulardii was examined. The metal tolerance testing was performed by MBECTM-HTP assay. The minimum inhibitory concentration (MICp) and minimum lethal concentration (MLCp) were determined as well as the minimum biofilm eradication concentration (MBEC). Biofilm was more tolerant on the presence of heavy metals than the planktonic cells. The planktonic cells of R. mucilaginosa were tolerant to high concentrations of Cd2+, Zn2+ and Ni2+, while the planktonic cells of S. boulardii tolerated Zn2+, exclusively. The R. mucilaginosa biofilm was tolerant to all of the tested metal concentrations and the obtained results were confirmed by fluorescence microscopy. S. boulardii did not show ability of biofilm formation. Metal removal efficiency of the R. mucilaginosa planktonic cells and biofilm were also tested. The R. mucilaginosa biofilm showed higher efficiency in metals removing compared to the planktonic cells. Until now, the heavy metal tolerance and the removal efficiency (Cd2+, Zn2+ and Ni2+) analyzes were performed solely on planktonic cells of Rhodotorula species. In this study, we investigated the metal removal efficiency of R. mucilaginosa planktonic cells and biofilm and compared the obtained results.
Reference
Ahalya, N., Ramachandra, T.V., Kanamadi, R.D. (2003) Biosorption of heavy metals. Research Journal of Chemistry and Environment, 7 (4): 71-79
Alloway, B.J. (1995) Introduction. u: Alloway, B. J. [ur.] Heavy Metals in Soils, Dordrecht: Springer Nature, str. 3-10
Basak, G., Lakshmi, V., Chandran, P., Das, N. (2014) Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies. Journal of Environmental Health Science and Engineering, 12(1): 8
Buzejić, A., Grujić, S., Radojević, I., Ostojić, A., Čomić, L., Vasić, S. (2016) Pb and Hg heavy metal tolerance of single- and mixedspecies biofilm (Rhodotorula mucilaginosa and Escherichia coli). Kragujevac Journal of Science, br. 38, str. 115-124
Ceri, H., Olson, M.E., Stremick, C., Read, R.R., Morck, D., Buret, A. (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37 (6): 1771-1776
Dönmez, G., Aksu, Z. (2001) Bioaccumulation of copper(ii) and nickel(ii) by the non-adapted and adapted growing CANDIDA SP. Water Research, 35(6): 1425-1434
Grujić, S., Vasić, S., Radojević, I., Čomić, L., Ostojić, A. (2017) Comparison of the Rhodotorula mucilaginosa Biofilm and Planktonic Culture on Heavy Metal Susceptibility and Removal Potential. Water, Air, & Soil Pollution, 228(2):
Grujić, S., Vasić, S., Čomić, L., Ostojić, A., Radojević, I. (2017) Heavy metal tolerance and removal potential in mixed-species biofilm. Water Science and Technology, 76(4): 806-812
Harrison, J.J., Rabiei, M., Turner, R.J., Badry, E.A., Sproule, K.M., Ceri, H. (2006) Metal resistance in Candida biofilms. FEMS Microbiology Ecology, 55(3): 479-491
Hima, K.A., Srinivasa, R.R., Vijaya, S.S., Jayakumar, S.B., Suryanarayana, V., Venkateshwar, P. (2007) Biosorption: An eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6(25): 2924-2931
Kronvall, G., Myhre, E. (2009) Differential staining of bacteria in clinical specimens using acridine orange buffered at low ph. Acta Pathologica Microbiologica Scandinavica Section B Microbiology, 85B(4): 249-254
L-Enzi, A.R.M., L-Charrakh, A.A.H. (2013) Heavy Metals Resistance of Pseudomonas aeruginosa Isolated from Clinical and Environmental Sources in Hilla City. Medical Journal of Babylon, 10 (1): 110-119
Li, Z., Yuan, H. (2006) Characterization of cadmium removal by Rhodotorula sp. Y11. Applied Microbiology and Biotechnology, 73(2): 458-463
Li, Z., Yuan, H. (2008) Responses of Rhodotorula sp. Y11 to cadmium. BioMetals, 21(6): 613-621
Mohammadian, F.M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., Ramazani, A. (2015) Highly cadmium tolerant fungi: their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13 (19): 1-9
Muneer, B., Shakoori, F.R., Rehman, A., Shakoori, A.R. (2007) Chromium resistant yeast with multimetal resistance isolated from industrial effluents and their possible use in microbial consortium for bioremediation of wastewater. Pakistan Journal of Zoology, 39 (5): 289-297
Rezza, I., Salinas, E., Elorza, M., Sanz, de T.M., Donati, E. (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochemistry, 36(6): 495-500
Salinas, E. (2000) Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra. Bioresource Technology, 72(2): 107-112
San, N.O., Dönmez, G. (2012) Biosorption of chromium(VI), nickel(II) and Remazol Blue by Rhodotorula muciloginosa biomass. Water Science & Technology, 65(3): 471
Suazo-Madrid, A., Morales-Barrera, L., Aranda-García, E., Cristiani-Urbina, E. (2011) Nickel(II) biosorption by Rhodotorula glutinis. Journal of Industrial Microbiology & Biotechnology, 38(1): 51-64
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/KgJSci1840217G
objavljen u SCIndeksu: 26.06.2018.
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka