Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:38
  • preuzimanja u poslednjih 30 dana:20

Sadržaj

članak: 1 od 85  
Back povratak na rezultate
2022, vol. 47, br. 4, str. 1-14
Upotreba veštačke inteligencije na traktorima u operacijama na njivama - pregled
aUniversity of Uyo, Department of Agricultural and Food Engineering, Uyo, Nigeria
bMichael Okpara University of Agriculture, Department of Agricultural and Bio-Resources Engineering, Umudike, Nigeria

e-adresaunwanaobong12@gmail.com
Ključne reči: veštačka inteligencija; poljoprivreda; traktor; poljske operacije; inženjering
Sažetak
Prema organizaciji UN za hranu i poljoprivredu [1], svetska populacija će se povećati za 2 milijarde do 2050. Međutim, do tada, obrađivati će se samo 4% dodatne površine zemljišta. Može se zaključiti: obzirom da se očekuje da globalna populacija treba dostići 9,1 milijardu 2050. godine, potrebno je proizvesti 70 % više hrane, inače bi oko 370 miliona ljudi bilo gladno 2050 godine. U tom svetlu, korišćenje najnovijih tehnoloških rešenja treba učiniti poljoprivredu efikasnijom, što ostaje kao jedan od najvećih imperativa. Dok veštačka inteligencija (VI) ima mnoge direktne primene u različitim sektorima, ona takođe može doneti promenu paradigme u tome kako danas vidimo poljoprivredu. Rešenja zasnovana na primeni veštačke inteligencije (VI) neće samo omogućiti poljoprivrednicima da urade više sa manje rada, već će takođe poboljšati kvalitet i obezbediti brži izlazak prinosa useva na tržište. Ovaj rad predstavlja pregled primene VI u radu traktora na terenu. U radu se detaljno razmatra upotreba robotike kao oblika veštačke inteligencije (VI) koja je veoma korisna u poljskim operacijama primene traktora kao što su: obrada zemljišta, setva, zaštita od korova, aplikacija herbicida i žetva. Tipičan fokus je stavljen na snagu traktora i ograničenja primene aplikacija za zaštitu useva i način korišćenja ekspertskih sistema za veću produktivnost.
Reference
Anthony, S. (2012) A system for semi-autonomous tractor operations. Autonomous Robots, The Robotic Institute, 13(1), 87-103
Banerjee, G., Sarkar, U., Das, S., Ghosh, I. (2018) Artificial intelligence in agriculture: A literature survey. International Journal of Scientific Research in Computer Science Applications and Management Studies, 3(1), 18-29
Blackmore, B.S., Fountas, S., Gemtos, T.A., Griepentrog, H.W. (2009) A specification for an autonomous crop production mechanization system. u: Application of Precision Agriculture for Fruits and Vegetables, International Symposium, Orlando, FL, USA, Proceedings, 201-216
Cho, S.I., Chang, S.J., Kim, Y.Y., An, K.J. (2002) AE-automation and emerging Technologies: Developmentofa three-degrees-of-freedom robot for harvesting lettuce using machine vision and fuzzy logic control. Biosystems Engineering, 82(2), 143-149
Driver, A. (2013) OFC13: Driverless tractors and robots to be the future of farming. Farmers Guardian
FAO (2020) Hunger and food insecurity. Food and Agriculture Organization of the United Nations, www.fao.org/hunger/en
Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann, S.C., Pekkeriet, E. (2672) Agricultural robotics for field operations. Sensors, 20(9), 2672
Harries, G.O., Ambler, B. (1981) Automatic ploughing: A tractor guidance system using opto-electronic remote sensing techniques and a microprocessor based controller. Journal of Agricultural Engineering Research, 26(1), 33-53
Humm, B.G. (2016) Applied artificial intelligence: An engineering approach. Learn Publishing, 291
Johnson, R. (2020) Jobs of the future: Starting a career in artificial intelligence. https://www.bestcolleges.com/blog/future-proof-industries-artificial -intelligence
Klose, R., Thiel, M., Ruckelshausen, A., Weedy, M.J. (2008) A sensor fusion based autonomous field robot for selective weed control. u: Agricultural Engineering-Land-Technik 2008: Landtechnik regional und International; Conference, Stuttgart-Hohenheim, Germany, 25-26. September 2008, Proceedings, pp.167-172
Klose, R., Marquering, J., Thiel, M., Ruckelshausen, A. (2020) Weedy: A sensor fusion based autonomous field robot for selective weed control. University of Applied Sciences Osnabrück
Lucas, C. (2011) Case IH wins SIMA innovation awards. Tractor.com
Mahmud, M.S.A., Abidin, M.S.Z., Mohamed, Z., Rahman, M.K.I.A., Iida, M. (2019) Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Computers and Electronics in Agriculture, 157, 488-499
Mark, B. (2011) Autonomous tractor is outstanding in its field. https://www.wired.com/2011/09/autonomous-tractor-is-outstanding-in-its-field
Matsuo, Y., Yukumoto, O., Noguchi, N. (2012) Enhanced adaptability of tilling robot (initial report). Japan Agricultural Research Quarterly: JARQ, 46(4), 295-303
Mccarthy, J., Minsky, M.L., Rochester, N., Shannon, C.E. (1955) A proposal for the Daartmouth summer research project on artificial intelligence. AI magazine, 27(4)
Micheal, A.M., Ojha, T.P. (2008) Principles of agricultural engineering. Jain Brothers, vol. I, 638
Nagasaka, Y., Tamaki, K., Nishiwaki, K., Saito, M., Motobayashi, K., Kikuchi, Y., Hosokawa, H. (2011) Autonomous rice field operation project in NARO. u: 2011 IEEE International Conference on Mechatronics and Automation, IEEE, 870-874
Nawaz, A.S.N., Nadaf, H.A., Kareem, A.M., Nagaraja, H. (2020) Application of artificial intelligence in agriculture-pros and cons. Vigyan Varta, 1(8), pp. 22-25
Ngozi, O., Clara, A., Eli-Chukwu, I. (2019) Applications of artificial intelligence in agriculture: A review. Engineering, Technology and Applied Science Research, 9(4), pp.4377-4383
Rangarajan, K., Raja, P., Perez, R.M. (2017) Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research, 15(1), 1-16
Rehman, T.U., Mahmud, M.S., Chang, Y.K., Jin, J., Shin, J. (2019) Current and future applications of statistical machine learning algorithms for agricultural machine vision systems. Computers and Electronics in Agriculture, 156, 585-605
Sammons, P.J., Furukawa, T., Bulgin, A. (2005) Autonomous pesticide spraying robot for use in a greenhouse. u: Australasian Conference on Robotics and Automation; Sydney, Australia. 5-7 December 2005, Proceedings
Sanchez-Hermosilla, J., Rodriguez, F., Gonzalez, R., Luis, J., Berenguel, M. (2010) Mobile robots navigation. London, UK: INTECH Open Access Publisher, A mechatronic description of an autonomous mobile robot for agricultural tasks in greenhouses
Singh, S., Burks, T.F., Lee, W.S. (2005) Autonomous robotic vehicle development for greenhouse spraying. Trans. Am. Soc. Agric. Eng, 48, 2355-2361
Umeda, M., Kubota, S., Iida, M. (1999) Development of 'STORK', a watermelon-harvesting robot. Artificial Life and Robotics, 3(3), 143-147
Underwood, J.P., Calleija, M., Taylor, Z., Hung, C., Nieto, J., Fitch, R., Sukkarieh, S. (2015) Real-time target detection and steerable spray for vegetable crops. u: Robotics and Automation: Robotics in Agriculture Workshop; International Conference, Seattle, WA, USA, 26-30 May 2015, Proceedings
Utstumo, T., Urdal, F., Brevik, A., Dørum, J., Netland, J., Overskeid, Ø., Berge, T.W., Gravdahl, J.T. (2018) Robotic in-row weed control in vegetables. Computers and Electronics in Agriculture, 154, 36-45
van Evert, F.K., van der Heijden, G.W.A.M., Lotz, L.A.P., Polder, G., Lamaker, A., de Jong, A., Kuyper, M.C., Groendijk, E.J.K., Neeteson, J.J., van der Zalm, T. (2006) A mobile field robot with vision-based detection of volunteer potato plants in a corn crop. Weed Technology, 20(4), 853-861
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/PoljTeh2204001G
primljen: 22.03.2022.
revidiran: 19.09.2022.
prihvaćen: 23.09.2022.
objavljen u SCIndeksu: 30.12.2022.

Povezani članci

Nema povezanih članaka