- citati u SCIndeksu: 0
- citati u CrossRef-u:[1]
- citati u Google Scholaru:[
]
- posete u poslednjih 30 dana:11
- preuzimanja u poslednjih 30 dana:2
|
|
2021, vol. 48, br. 1, str. 29-39
|
Poboljšani protokol za prirodno konvektivno sušenje bundeve
An improved protocol for natural convective drying of pumpkin
Renewable Energy Development Centre (CDER), Solar Thermal and Geothermal Energy Division, Algiers, Algeria
e-adresa: a.bouhdjar@cder.dz
Ključne reči: slobodan protok vazduha; optimizacija energije; konfiguracija uzorka; povrće; Page model; difuzivnost
Sažetak
Najefikasniji način očuvanja poljoprivrednog proizvoda je sušenje. Međutim, sušenje povrća je postupak koji troši energiju. U ovom radu, razmatra se konvektivno sušenje bundeve sa ciljem iznalaženja režima sušenja koji smanjuje vreme sušenja i minimizira potrošnju toplote. U radu se razmatra i uticaj konfiguracije uzorka na efikasnost sušenja i ispituju se uzorci bundeve u obliku kriške i kocke. Uzorci su pod-vrgnuti protoku vazduha sa slobodnom konvekcijom na različitim temperaturama (40 °C, 46 °C, 52 °C i 60 °C) za svaku seriju. Takođe je uzet u obzir i režim sušenja sa promenljivom temperaturom vazdušne struje. Krive sušenja su fitovane korišćenjem široko upotrebljavanih modela kod modelovanja tankoslojnog sušenja. Eksperimentalni podaci su se najbolje uklapali u izmenjeni Pejdžov model. Efektivni koeficijent difuzivnosti određen je za svaku seriju preko nagiba krive promene sadržaja vlage. Pokazalo se da je difuzivnost velika, a vreme sušenja kratko za ispitivane visoke temperature sušenja. Procesi sušenja za uzorke bundeve u obliku kocke bili su efikasniji u odnosu na one u obliku kriške. Pri primeni režima sušenja sa promenljivom temperaturom vazdušne struje na uzorke bundeve u obliku kocke, analiza podataka pokazala je da je efektivna difuznost bila veća u trećoj fazi u poređenju sa svim ostalim ispitivanim temperaturama sušenja, dok je ukupno vreme sušenja bilo je slično onom dobijenom u režimu sušenja na visokoj temperaturi. Ovim postupkom ukupno potrošena energija bila je mnogo manja, a vreme sušenja kraće.
Abstract
The most effective way to preserve agricultural product is drying. However, vegetable drying is an energy-consuming procedure. Convective drying is the mode considered in this work. The study intends to explore a new way of pumpkin drying, which reduces drying time and minimizes heat consumption. The study considers pumpkin thin slices and pumpkin samples with cubic shape. The samples were subjected to free convection airflow at different temperatures (40 °C, 46 °C, 52 °C, and 60 °C) for each run. A varying airflow temperature was also considered. Airflow velocity was generated by buoyancy forces for each temperature. Drying curves were plotted and fitted to the widely used thin-layer drying models. The modified Page model came out as the best-fitted model. The effective diffusivity coefficient was determined for each case using the slope moisture curve. It appeared that diffusivity was high and drying time was short, for high temperature. Drying processes for slice configuration and cube configuration showed that the latter was more efficient. When applying the regime of increasing temperatures to the cubic samples, data analysis showed that effective diffusivity was higher during the third step in comparison to all the other drying temperatures and the total drying time was similar to that obtained at drying regime on high temperature. With this procedure, the final consumed energy was much less and the time was shorter.
|
|
|
Reference
|
|
Arévalo-Pinedo, A., Murr, F.E.X. (2007) Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin. Journal of Food Engineering, 80: 152-156
|
|
Bantle, M., Käfer, T., Eikevik, T.M. (2013) Model and process simulation of microwave assisted convective drying of clipfish. Applied Thermal Engineering, 59: 675-682
|
|
Bouhdjar, A., Semai, H., Boukadoum, A., El, M.S., Mazari, A., Semiani, M., Amari, A. (2020) Improved procedure for natural convection garlic drying. Acta Technologica Agriculturae, 2: 92-98
|
11
|
Crank, J. (1979) The mathematics of diffusion. Great Britain: Oxford Press
|
|
Crapiste, G.H., Whitaker, S., Rotstein, E. (1988) Drying of cellular material: I: A mass transfer theory. Chemical Engineering Science, 43(11): 2919-2928
|
1
|
Doymaz, I. (2007) The kinetics of forced convective air-drying of pumpkin slices. Journal of Food Engineering, 79(1): 243-248
|
|
Esturk, O., Soysal, Y. (2010) Drying properties and quality parameters of dill dried with intermittent and continuous microwave-convective air treatments. Journal of Agricultural Science, 16: 26-36
|
|
Incropera, F.P., de Witt, D.P. (1996) Introduction to heat transfer. New York: Wiley, 3rd ed
|
|
Kocabiyik, H. (2010) Combined infrared radiation and hot air drying. u: Pan Z.; Atungulu G.G. [ur.] Infrared Heating for Food and Agricultural Processing, CRC Press Taylor, 101-116
|
|
Luikov, A.V. (1968) Analytical heat diffusion theory. New York: Academic Press
|
|
Madamb, P.S., Driscoll, R.H., Buckle, K.A. (1996) The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29: 75-97
|
1
|
Nawirska-, A.F.A., Kucharska, A.Z., Sokół-Łpetowska, A., Biesiada, A. (2009) Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 94 (2009), str. 14-20
|
|
Ortiz-Garcia-carrasco, B., Yanez-Mota, E., Pachecoaguirre, F.M., Ruiz-Espinosa, H., Garcia-Alvarado, M.A., Cortes-Zavaleta, O., Ruiz-Lopéz, I.I. (2015) Drying of shrinkable food products: Appraisal of deformation behavior and moisture diffusivity estimation under isotropic shrinkage. Journal of Food Engineering, 144: 138-147
|
|
Perez, N.E., Schmalko, M.E. (2009) Convective drying of pumpkin: Influence of pre-treatment and drying temperature. Journal of Food Process Engineering, 32: 88-103
|
|
Roongruangsri, W., Bronlund, J.E. (2015) A review of drying processes in the production of pumpkin powder. International Journal of Food Engineering, 11: 789-799
|
|
Ruhanian, S., Movagharnejad, K. (2016) Mathematical modeling and experimental analysis of potato thin-layer drying in an infrared-convective dryer. Engineering in Agriculture, Environment and Food, 9: 84-91
|
|
Seremet, L., Botez, E., Nistor, O.V., Andronoiu, D.G., Mocanu, G.D. (2016) Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195: 104-109
|
|
Süfer, Ö., Sezer, S., Demir, H. (2017) Thin layer mathematical modeling of convective, vacuum and microwave drying of intact and brined onion slices. Journal of Food Processing and Preservation, 41(6): e13239-e13239
|
|
Tunde-Akintunde, T.Y., Ogunlakin, G.O. (2013) Mathematical modeling of drying of pretreated and untreated pumpkin. Journal Food Science and Technology, 50: 705-713
|
|
|
|