Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 6 od 51  
Back povratak na rezultate
2022, vol. 58, br. 1, str. 29-41
Uticaj sadržaja titanijuma na mikrostrukturu i ponašanje pri habanju Fe(13-x)TixB7 (x=0-5) legure za tvrdo navarivanje
aSakarya University of Applied Sciences, Machine and Metal Program, Vocational School of Arifiye, Arifiy, Sakarya, Turkey
bZonguldak Bülent Ecevit University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, İncivez, Zonguldak, Turkey
cSakarya University, Faculty of Engineering, Department of Metallurgical and Materials Engineering, Esentepe Campus, Sakarya, Turkey

e-adresabkilinc@subu.edu.tr
Projekat:
Authors are grateful to the financial support provided by Sakarya University Scientific Research Projects Unit with Project No. 2014-50-02-013.

Ključne reči: Tvrdo navarivanje; Legiranje površine; Fe-Ti-B legura; Borid; Tvrdoća; Habanje
Sažetak
U ovoj studiji je ispitivan uticaj dodavanja titanijuma na mikrostrukturu, tvrdoću, i stopu habanja čvrstih površinskih slojeva legure na bazi Fe(13-x)Tix B7 (x = 0, 1, 2, 3 i 5) formiranih metodom zavarivanja elektrolučnom volframovom elektrodom (GTA). Nakon ispitivanja mikrostruktura i faze analize, utvrđeno je da se strukture prevlaka sastoje od a-Fe, aFe+Fe2B eutektičke, a-Fe+Fe2 Ti eutektičke i tvrde TiB2 faze. U tvrdom površinskom sloju legure, kako je količina titanijuma povećavana, tako se i gustina TiB2 faze u sistemu povećala, i primećeno je da se iz ekviaksijalne strukture formiraju štapičaste faze i faze dugih oštrih ivica. Kao rezultat ispitivanja habanja izvršenih pri različitim opterećenjima, utvrđeno je da dodavanje titanijuma smanjuje stopu habanja u sloju prevlake. Uz to, slike ishabanih površina dobijene skenirajućim elektronskim mikroskopom (SEM) pokazale su da su mehanizmi habanja bili adhezivni i oksidativni.
Reference
Abakay, E., Kilinc, B., Sen, S., Sen, U. (2015) Wear Properties of TIG Surface Alloyed Steel with 50%Fe-10%W-40%B Alloy. Acta Physica Polonica A, 127: 957-960
Amushahi, M.H., Ashrafizadeh, F., Shamanian, M. (2010) Characterization of boride-rich hardfacing on carbon steel by arc spray and GMAW processes. Surface and Coatings Technology, 204: 2723-2728
Antoni-Zdziobek, A., Gospodinova, M., Bonnet, F., Hodaj, F. (2016) Solidification paths in the iron-rich part of the Fe-Ti-B ternary system. Journal of Alloys and Compounds, 657: 302-312
Buchely, M.F., Gutierrez, J.C., León, L.M., Toro, A. (2005) The effect of microstructure on abrasive wear of hardfacing alloys. Wear, 259: 52-61
Buytoz, S., Eren, H. (2007) Effect of particle reinforcements on abrasive wear performance of aluminum metal matrix composites. Science and engineering Journal of Fırat University, 19: 209-216
Chen, J.H., Chen, P.N., Lin, C.M., Chang, C.M., Chang, Y.Y., Wu, W. (2009) Characterization of multi-element alloy claddings manufactured by the tungsten inert gas process. Surface and Coatings Technology, 203: 2983-2988
Chiu, K.Y., Cheng, F.T., Man, H.C. (2005) Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi. Materials Science and Engineering: A, 392: 348-358
Darabara, M., Papadimitriou, G.D., Bourithis, L. (2006) Production of Fe-B-TiB2 metal matrix composites on steel surface. Surface and Coatings Technology, 201: 3518-3523
Durmuş, H., Çömez, N., Gül, C., Yurddaşkal, M., Yurddaşkal, M. (2018) Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test. International Journal of Refractory Metals and Hard Materials, 77: 37-43
Eroglu, M. (2009) Boride coatings on steel using shielded metal arc welding electrode: Microstructure and hardness. Surface and Coatings Technology, 203: 2229-2235
Gou, J., Lu, P., Wang, Y., Liu, S., Zou, Z. (2016) Effect of nano-additives on microstructure, mechanical properties and wear behaviour of Fe⿿Cr⿿B hardfacing alloy. Applied Surface Science, 360: 849-857
Kilinc, B., Cegil, O., Abakay, E., Sen, U., Sen, S. (2014) Characterization of Fe-Nb-B Base Hardfacing of Steel. Acta Physica Polonica A, 125: 656-658
Kocaman, E., Kılınç, B., Şen, Ş., Şen, U. (2020) Effect of chromium content on Fe(18-x) CrxB2(X=3,4,5) hardfacing electrode on microstructure, abrasion and corrosion behavior. Journal of the Faculty of Engineering and Architecture of Gazi University, 36: 177-190
Kocaman, E., Kılınç, B., Durmaz, M., Şen, Ş., Şen, U. (2021) The influence of chromium content on wear and corrosion behavior of surface alloyed steel with Fe(16-x)Crx(B,C)4 electrode. Engineering Science and Technology, an International Journal, 24: 533-542
Lin, Y.C., Cho, Y.H. (2009) Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicomponent alloy clad layers synthesized in situ. Surface and Coatings Technology, 203: 1694-1701
Madadi, F., Shamanian, M., Ashrafizadeh, F. (2011) Effect of pulse current on microstructure and wear resistance of Stellite6/tungsten carbide claddings produced by tungsten inert gas process. Surface and Coatings Technology, 205: 4320-4328
Olson, L.D., Siewert, T.A., Liu, S., Edwards, G.R. (1993) Welding, Brazing, and Soldering. u: Kottcamp E. H. [ur.] ASM Handbook: Welding Brazing and Soldering, America: ASM International, 8th ed., p.1967
Raghavan, V. (1992) Phase Diagrams of Ternary Iron Alloys. Indian Institute of Metals, 433
Rai, V.K., Srivastava, R., Nath, S.K., Ray, S. (1999) Wear in cast titanium carbide reinforced ferrous composites under dry sliding. Wear, 231: 265-271
Roshan, M.R., Mousavian, T.R., Ebrahimkhani, H., Mosleh, A. (2013) Fabrication of Al-based composites reinforced with Al2O3-TiB2 ceramic composite particulates using vortex-casting method. Journal of Mining and Metallurgy B: Metallurgy, vol. 49, br. 3, str. 299-305
Shackelford, W., Alexander, J.F. (2001) Materials Science and Engineering. Washington, DC: CRC Press LLC, 3rd ed., p.553
Stalin, B., Ravichandran, M., Mohanavel, V., Raj, P. L. (2020) Investigations into microstructure and mechanical properties of Mg-5WT.%Cu-TiB2 composites produced via powder metallurgy route. Journal of Mining and Metallurgy B: Metallurgy, vol. 56, br. 1, str. 99-108
Sun, L., Gao, Y., Xiao, B., Li, Y., Wang, G. (2013) Anisotropic elastic and thermal properties of titanium borides by first-principles calculations. Journal of Alloys and Compounds, 579: 457-467
Ulutan, M., Yildirim, M., Buytoz, S. (2009) Investigation of microstructure of hardfaced AISI 4140 steel by TIG welding process. Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, 12: 93-107
Venkatesh, B., Sriker, K., Prabhakar, V.S.V. (2015) Wear Characteristics of Hardfacing Alloys: State-of-the-art. Procedia Materials Science, 10: 527-532
Wang, X.H., Song, S.L., Qu, S.Y., Zou, Z.D. (2007) Characterization of in situ synthesized TiC particle reinforced Fe-based composite coatings produced by multi-pass overlapping GTAW melting process. Surface and Coatings Technology, 201: 5899-5905
Wang, Z.T., Zhou, X.H., Zhao, G.G. (2008) Microstructure and formation mechanism of in-situ TiC-TiB2/Fe composite coating. Transactions of Nonferrous Metals Society of China, 18: 831-835
Yilmaz, S.O., Ozenbas, M. (2009) TiB2-reinforced composite coating by gas tungsten arc welding. Journal of Materials Science, 44: 3273-3284
Yilmaz, S.O., Ozenbas, M., Yaz, M. (2009) Synthesis of TiB2-reinforced iron-based composite coating. Tribology International, 42: 1220-1229
Zhou, F., Suh, C.M., Kim, S.S., Murakami, R.I. (2002) Slidingwear behavior of TIN-and CrN-coated 2024 aluminum alloy against an Al2O3 ball. Tribology Letters, 13: 173-178
 

O članku

jezik rada: engleski, srpski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JMMB210430047K
primljen: 30.04.2021.
prihvaćen: 06.08.2021.
objavljen u SCIndeksu: 28.01.2022.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka