Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:6
  • preuzimanja u poslednjih 30 dana:6

Sadržaj

članak: 8 od 51  
Back povratak na rezultate
2021, vol. 57, br. 2, str. 285-293
Ponašanje austenitnog nerđajućeg čelika sa visokim sadržajem azota Fe-19Cr-15Mn-0.66N pri trenju i habanju
aJiangsu University of Science and Technology, School of Materials Science and Engineering, Zhenjiang, China
bChinese Academy of Sciences, CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Shenyang, China
cNortheastern University, School of Metallurgy, Shenyang, China
dGuangdong Institute of Materials and Processing, Guangdong Key Laboratory of Metal Toughening Technology and Application, Guangzhou, China

e-adresayxqiao@just.edu.cn, jchen496@uwo.ca, zbzheng712003@163.com
Projekat:
The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 51905110)
The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 51401092)
Science and Technology Planning Project of Guangzhou (No. 201906040007)

Ključne reči: austenitni nerđajući čelik sa visokim sadržajem azota; habanje; očvršćavanje; koeficijent trenja
Sažetak
Istraživano je ponašanje austenitnog nerđajućeg čelika (HNSS) sa visokim sadržajem azota Fe-19Cr-15Mn-0.66N pri trenju i habanju. Tribološka ispitivanja su izvršena pod različitim opterećenjima od 5 N, 10 N, 15 N i 20 N. Da bi se razumeo mehanizam habanja pod različitim opterećenjima kao i razlozi za veću otpornost na habanje korišćeni su elektronski skenirajući mikroskop (SEM) i konfokalni lasersko-skenirajući mikroskop (LSMC). Uočeni su niži koeficijent trenja i veća otpornost na habanje sa povećanjem opterećenja. Pod većim opterećenjem, trenje je povećalo sposobnost očvršćavanja HNSS što je poboljšalo njegovu površinsku tvrdoću, i na taj način otpornost na habanje HNSS je porasla.
Reference
Becerikli, M., Jaurich, H., Wallner, C., Wagner, J.M., Dadras, M., Jettkant, B., Pöhl, F., Seifert, M., Jung, O., Mitevski, B., Karkar, A., Lehnhardt, M., Fischer, A., Kauther, M.D., Behr, B. (2019) P2000: A high-nitrogen austenitic steel for application in bone surgery. PLOS ONE, 14(3), e0214384
Cao, Y.J., Sun, J.Q., Ma, F., Chen, Y.Y., Cheng, X.Z., Gao, X., Xie, K. (2017) Effect of the microstructure and residual stress on tribological behavior of induction hardened GCr15 steel. Tribology International, 115, 108-115
Chen, Z.X., Hu, H.X., Zheng, Y.G., Guo, X.M. (2021) Effect of groove microstructure on slurry erosion in the liquid-solid two-phase flow. Wear, 466-467, 203561-203561
Choi, B.J., Cho, I.S., Jung, D.H., Lee, M.G., Jeon, Y.H. (2019) Arch. Metall. Mater, 64(3), 841-844
Dastur, Y.N., Leslie, W.C. (1981) Mechanism of work hardening in Hadfield manganese steel. Metallurgical Transactions A, 12(5), 749-759
Dib, J., Hereñu, S., Alí, D., Pellegri, N. (2020) Influence of load, surface finish and lubrication on friction coefficient of AISI 304 stainless steel. Journal of Materials Engineering and Performance, 29(5), 2739-2747
Fellah, M., Aissani, L., Abdul, S.M., Iost, A., Mohamed, Z.T., Montagne, A., Nouveau, C. (2017) Effect of replacing vanadium by niobium and iron on the tribological behavior of hiped titanium alloys. Acta Metallurgica Sinica (English Letters), 30(11), 1089-1099
Fu, W.T., Zheng, Y.Z., He, X.K. (2001) Wear, 249, 788-791
Grabke, H.J. (1996) High nitrogen steels: The role of nitrogen in the corrosion of iron and steels. ISIJ International, 36(7), 777-786
Gürol, U., Can, K.S. (2020) Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel. Journal of Mining and Metallurgy B: Metallurgy, vol. 56, br. 2, str. 171-182
Ha, H., Lee, T., Oh, C., Kim, S. (2009) Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe-18Cr-10Mn alloys. Scripta Materialia, 61(2), 121-124
Ha, H., Lee, T., Kim, S. (2012) Role of nitrogen in the active-passive transition behavior of binary Fe-Cr alloy system. Electrochimica Acta, 80, 432-439
Haènninena, H., Romu, J., Ilolaa, R., Tervoc, J., Laitinend, A. (2001) J. Mater. Process. Tech, 117(3), 424-430
Hedenqvist, P., Hogmark, S. (1997) Tribol. Int, 30(7), 507-516
Herrera, C., Ponge, D., Raabe, D. (2011) Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Materialia, 59(11), 4653-4664
Hsu, S.M., Shen, M.C., Ruff, A.W. (1997) Wear prediction for metals. Tribology International, 30(5), 377-383
Huang, C.S., Shih, C.C. (2005) Effects of nitrogen and high temperature aging on s phase precipitation of duplex stainless steel. Materials Science and Engineering: A, 402(1-2), 66-75
Jargelius-Pettersson, R.F.A. (1999) Corros. Sci, 41(8), 1639-1664
Jin, S.X., Ma, H.L., Lu, E.Y., Zhou, L., Zhang, Q.L., Fan, P., Yan, Q.Z., Yuan, D.Q., Cao, X.Z., Wang, B.Y. (2021) Depth distributions of cavities in advanced ferritic/martensitic and austenitic steels with high helium preimplantation and high damage level. Materials Today Energy, 20, 100687
Kubota, S., Xia, Y., Tomota, Y. (1998) Work-hardening behavior and evolution of dislocation-microstructures in high-nitrogen bearing austenitic steels. ISIJ International, 38(5), 474-481
Lee, T.H., Oh, C.S., Kim, S.J., Takaki, S. (2007) Deformation twinning in high-nitrogen austenitic stainless steel. Acta Materialia, 55(11), 3649-3662
Lee, T., Oh, C., Kim, S. (2008) Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe-18Cr-10Mn-N steels. Scripta Materialia, 58(2), 110-113
Li, H., Jiang, Z., Zhang, Z., Yang, Y. (2009) Effect of grain size on mechanical properties of nickel-free high nitrogen austenitic stainless steel. Journal of Iron and Steel Research International, 16(1), 58-61
Li, Q., Guo, J., Zhao, A.M. (2019) Effect of upper bainite on wear behaviour of high-speed wheel steel. Tribology Letters, 67(4), 121
Lim, S.C., Ashby, M.F. (1987) Overview no. 55 wear-mechanism maps. Acta Metallurgica, 35(1), 1-24
Lin, H., Yang, M., Shu, B. (2020) Fretting wear behaviour of high-nitrogen stainless bearing steel under lubrication condition. Journal of Iron and Steel Research International, 27(7), 849-866
Lin, Y.M., Lu, J., Wang, L.P., Xu, T., Xue, Q.J. (2006) Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel. Acta Materialia, 54(20), 5599-5605
Llewellyn, D.T. (1997) Work hardening effects in austenitic stainless steels. Materials Science and Technology, 13(5), 389-400
Lo, K.H., Shek, C.H., Lai, J.K.L. (2009) Recent developments in stainless steels. Materials Science and Engineering: R: Reports, 65(4-6), 39-104
Lu, D.S., Liu, Z.Y., Li, W., Liao, Z., Tian, H., Xian, J.Z. (2015) China Foundry, 12 (1), 39-47
Lu, Y., Zhou, D., Li, X., Wang, J., Li, W. (2018) Z. Bai, Mater. Tehnol, 52(5), 673-678
Mao, Y.S., Wang, L., Chen, K.M., Wang, S.Q., Cui, X.H. (2013) Tribo-layer and its role in dry sliding wear of Ti-6Al-4V alloy. Wear, 297(1-2), 1032-1039
Marteau, J., Bouvier, S., Bigerelle, M. (2015) Review on numerical modeling of instrumented indentation tests for elastoplastic material behavior identification. Archives of Computational Methods in Engineering, 22(4), 577-593
Milititsky, M., de Wispelaere, N., Petrov, R., Ramos, J.E., Reguly, A., Hänninen, H. (2008) Characterization of the mechanical properties of low-nickel austenitic stainless steels. Materials Science and Engineering: A, 498(1-2), 289-295
Mills, D.J., Knutsen, R.D. (1998) An investigation of the tribological behaviour of a high-nitrogen CrMn austenitic stainless steel. Wear, 215(1-2), 83-90
Ming, H.L., Liu, X.C., Lai, J., Wang, J.Q., Gao, L.X., Han, E. (2020) Fretting wear between Alloy 690 and 405 stainless steel in high temperature pressurized water with different normal force and displacement. Journal of Nuclear Materials, 529, 151930
Müllner, P., Solenthaler, C., Uggowitzer, P., Speidel, M.O. (1993) On the effect of nitrogen on the dislocation structure of austenitic stainless steel. 164 (1-2), 164-169
Ojima, M., Adachi, Y., Tomota, Y., Ikeda, K., Kamiyama, T., Katada, Y. (2009) Work hardening mechanism in high nitrogen austenitic steel studied by in situ neutron diffraction and in situ electron backscattering diffraction. Materials Science and Engineering: A, 527(1-2), 16-24
Oliver, W.C., Pharr, G.M. (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), 1564-1583
Qiao, Y.X., Wang, S., Liu, B., Zheng, Y.G., Bing, L.H., Jiang, Z.H. (2016) Acta Metall. Sin, 52 (2), 233-240
Qiao, Y., Chen, Y., Li, L., Chen, J., Emori, W., Wang, X., Yang, L., Zhou, H., Song, G., Naik, N., Wang, Z., Guo, Z. (2021) Corrosion behavior of a nickel-free high-nitrogen stainless steel with hydrogen charging. JOM, 73(4), 1165-1172
Qiao, Y.X., Chen, J., Zhou, H.L., Wang, Y.X., Song, Q.N., Li, H.B., Zheng, Z. (2019) Effect of solution treatment on cavitation erosion behavior of high-nitrogen austenitic stainless steel. Wear, 424-425, 70-77
Qiao, Y.X., Tian, Z.H., Cai, X., Chen, J., Wang, Y.X., Song, Q.N., Li, H.B. (2019) Cavitation erosion behaviors of a nickel-free high-nitrogen stainless steel. Tribology Letters, 67(1), 1
Savaşkan, T., Bican, O. (2010) Dry sliding friction and wear properties of Al-25Zn-3Cu-3Si alloy. Tribology International, 43(8), 1346-1352
Sébastien, A., Jean, P.C., Olivier, B. (2002) Steel Res. Int, 73(6-7), 299-302
Shi, Z., Wang, Z., Wang, J., Qiao, Y., Chen, H., Xiong, T., Zheng, Y. (2020) Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding by Tungsten Inert Gas (TIG) surfacing process. Acta Metallurgica Sinica (English Letters), 33(3), 415-424
Simmons, W.J. (1995) Mechanical properties of isothermally aged high-nitrogen stainless steel. Metallurgical and Materials Transactions A, 26(10), 2579-2595
Song, Y., Yu, C., Miao, X., Han, X., Qian, D., Chen, X. (2017) Tribological performance improvement of bearing steel GCr15 by an alternating magnetic treatment. Acta Metallurgica Sinica (English Letters), 30(10), 957-964
Stein, G., Hucklenbroich, I. (2004) Manufacturing and applications of high nitrogen steels. Materials and Manufacturing Processes, 19(1), 7-17
Torres, H., Varga, M., Adam, K., Rodríguez, R.M. (2016) The role of load on wear mechanisms in high temperature sliding contacts. Wear, 364-365, 73-83
Tschiptschin, A.P., Garzón, C.M., Lopez, D.M. (2006) The effect of nitrogen on the scratch resistance of austenitic stainless steels. Tribology International, 39(2), 167-174
Vats, V., Baskaran, T., Arya, S.B. (2018) Tribo-corrosion study of nickel-free, high nitrogen and high manganese austenitic stainless steel. Tribology International, 119, 659-666
Wang, L., Tieu, A.K., Cui, S.G., Deng, G.U., Wang, P., Zhu, H.T., Yang, J. (2020) Lubrication mechanism of sodium metasilicate at elevated temperatures through tribo-interface observation. Tribology International, 142, 105972
Wei, D.B., Liang, H.X., Li, S.Q., Li, F.K., Ding, F., Wang, S.Y., Liu, Z.L., Zhang, P.Z. (2019) Microstructure and tribological behavior of W-Mo alloy coating on powder metallurgy gears based on double glow plasma surface alloying technology. Journal of Mining and Metallurgy B: Metallurgy, vol. 55, br. 2, str. 227-234
Xi, Y.T., Bai, Y.Y., Gao, K.W., Pang, X.L., Yang, H.S., Yan, L.C., Volinsky, A.A. (2018) Residual stress and microstructure effects on mechanical, tribological and electrical properties of TiN coatings on 304 stainless steel. Ceramics International, 44(13), 15851-15858
Zhang, L.M., Li, Z.X., Hu, J.X., Ma, A.L., Zhang, S.M., Daniel, E.F., Umoh, A.J., Hu, H.X., Zheng, Y.G. (2021) Understanding the roles of deformation-induced martensite of 304 stainless steel in different stages of cavitation erosion. Tribology International, 155, 106752
Zhang, Q.Y., Ding, H.Y., Zhou, G.H., Zhang, L.C., Chen, Q.M., Qin, K., Dai, Y.J. (2017) Tribology, 37(6), 823-830
Zhang, Q.Y., Zhou, Y., Wang, L., Cui, X.H., Wang, S.Q. (2016) Investigation on tribo-layers and their function of a titanium alloy during dry sliding. Tribology International, 94, 541-549
Zhang, X.R., Sun, S.C., Sun, G.C., Han, S., Jiang, Z.H., Lian, J.S. (2019) Nanoindentation creep deformation behaviour of high nitrogen nickel-free austenitic stainless steel. Materials Science and Technology, 35(13), 1592-1599
Zhao, H., Ren, Y., Dong, J., Yang, K. (2018) The microstructure and tribological behavior of a pre-cold-deformed 0.90 % nitrogen containing stainless steel. Materialwissenschaft und Werkstofftechnik, 49(12), 1439-1448
Zhao, H.C., Ren, Y.B., Liu, W.P., Fan, X.M., Yang, K. (2016) Chinese J. Mater. Res, 30(3), 171-178
Zhao, H., Ren, Y., Dong, J., Fan, X., Yang, K. (2016) Effect of cold deformation on the friction-wear property of a biomedical nickel-free high-nitrogen stainless steel. Acta Metallurgica Sinica (English Letters), 29(3), 217-227
Zylla, I., Hougardy, H.P. (1994) Cavitation behaviour of a metastable Cr-Mn-austenite. Steel Research, 65(4), 132-137
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/JMMB201026025Q
primljen: 26.10.2020.
prihvaćen: 08.03.2021.
objavljen u SCIndeksu: 10.09.2021.
metod recenzije: jednostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka