Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:3
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 6 od 293  
Back povratak na rezultate
2019, vol. 60, br. 4, str. 321-330
Aplikacija evolucionog algoritma za estimaciju uticaja sistema farme na prirodu
aUniverzitet u Prištini sa privremenim sedištem u Kosovskoj Mitrovici, Fakultet tehničkih nauka
bUniverzitet Sinergija, Bijeljina, Republika Srpska, BiH
cUniverzitet Singidunum, Beograd

e-adresasrdjanjovic2016@hotmail.com
Ključne reči: Optimizacija; Menadžment energije; Pšenica; Emisija staklene bašte
Sažetak
Široka primena energije od različitih izvora u poljoprivrednoj proizvodnji je rezultovalo u negativnom uticaju na prirodu. Važnost sigurnosti hrane i održiva proizvodnja je neizbežna i prema tome pronalazak pogodnih solucija za zadovoljavanje svetskih zahteva za hranu kao i zahteva spoljašne prirodne okoline je interesantan zadatak u skorijim dekadama. Evolucioni algoritmi se mogu koristiti za ove probleme zato što oni mogu simultano da se fokusiraju na više ciljnih funkcija. Višekriterijumski genetski algoritam je jedan od tih evolucionih algoritama koji je korišćen u ovom radu, a pšenica je korišćena kao jedan od najbitnijih izvora hrane. Cilj je bio pronaći optimalne ulazne parametre koji će minimizovati emisiju gasova staklene bašte i maksimizovati izlaznu energiju istovremeno. Rezultati prikazuju da u proseku 41% ukupne ulazne energije se može smanjiti i simultano, 68% od ukupne emisije staklene bašte se može smanjiti. Retultati prikazuju da je ukulno 28024 MJ ukupne energije potrebno od različitih izvora za obrađivanje pšenice u datom regionu dok je u datim uslovima ukupno 47225 MJ potrešene energije u proseku. TA količina energije je odgovorna za 4217 kg CO2 dok se to može smanjiti na vrednosti od 1502 kg CO2 po hektaru za proizvodnju pšenice. Dobijeni rezultati u ovom istraživanju prikazuju korisnu aplikaciju više kriterijumskih genetskih algoritama za optimizaciju potrošnje energije u proizvodnji pšenice.
Reference
Beccali, M., Cellura, M., Iudicello, M., Mistretta, M. (2010) Life cycle assessment of Italian citrus-based products: Sensitivity analysis and improvement scenarios. Journal of Environmental Management, 91(7): 1415-1428
Beheshti, T.I., Keyhani, A., Rafiee, S. (2010) Energy balance in Iran's agronomy (1990-2006). Renewable and Sustainable Energy Reviews, 14(2): 849-855
Canakci, M., Topakci, M., Akinci, I., Ozmerzi, A. (2005) Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Conversion and Management, 46(4): 655-666
Castanheira, É.G., Dias, A.C., Arroja, L., Amaro, R. (2010) The environmental performance of milk production on a typical Portuguese dairy farm. Agricultural Systems, 103(7): 498-507
Cellura, M., Longo, S., Mistretta, M. (2012) Life Cycle Assessment (LCA) of protected crops: An Italian case study. Journal of Cleaner Production, 28: 56-62
Fantin, V., Buttol, P., Pergreffi, R., Masoni, P. (2012) Life cycle assessment of Italian high quality milk production: A comparison with an EPD study. Journal of Cleaner Production, 28: 150-159
IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Hayama, Japan: IGES, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, (editors), Prepared by the national greenhouse gas inventories programme, 'Available in: http://www.ipccnggip.iges.or.jp/public/2006gl/index.htm'
Khoshnevisan, B., Rafiee, S., Omid, M., Yousefi, M., Movahedi, M. (2013) Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy, 52: 333-338
Khoshnevisan, B., Rafiee, S., Omid, M., Mousazadeh, H., Rajaeifar, M.A. (2014) Application of artificial neural networks for prediction of output energy and GHG emissions in potato production in Iran. Agricultural Systems, 123: 120-127
Konak, A., Coit, D.W., Smith, A.E. (2006) Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9): 992-1007
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudsen, M.T., Keyhani, A., Mousavi-Avval, S.H., Hermansen, J.E. (2013) Potential greenhouse gas emission reductions in soybean farming: A combined use of Life Cycle Assessment and Data Envelopment Analysis. Journal of Cleaner Production, 54: 89-100
Mohammadi, A., Rafiee, S., Jafari, A., Keyhani, A., Mousavi-Avval, S.H., Nonhebel, S. (2014) Energy use efficiency and greenhouse gas emissions of farming systems in North Iran. Renewable and Sustainable Energy Reviews, 30: 724-733
Mousavi-Avval, S.H., Rafiee, S., Jafari, A., Mohammadi, A. (2011) Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production, 19(13): 1464-1470
Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., Mobtaker, H.G. (2014) Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65: 311-317
Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M.Y., Alimardani, F. (2012) Application of ANFIS to predict crop yield based on different energy inputs. Measurement, 45(6): 1406-1413
Omid, M., Ghojabeige, F., Delshad, M., Ahmadi, H. (2011) Energy use pattern and benchmarking of selected greenhouses in Iran using data envelopment analysis. Energy Conversion and Management, 52(1): 153-162
Ortiz-Canavate, J., Hernanz, J. (1999) Energy Analysis and Saving. u: Kitani O. [ur.] CIGR Handbook of Agricultural Engineering, Japan: American Society of Agricultural Engineers
Ozkan, B., Akcaoz, H., Fert, C. (2004) Energy input-output analysis in Turkish agriculture. Renewable Energy, 29(1): 39-51
Pahlavan, R., Omid, M., Akram, A. (2012) Energy input-output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy, 37(1): 171-176
Pishgar-Komleh, S.H., Ghahderijani, M., Sefeedpari, P. (2012) Energy consumption and CO2 emissions analysis of potato production based on different farm size levels in Iran. Journal of Cleaner Production, 33: 183-191
Rafiee, S., Mousavi, A.S.H., Mohammadi, A. (2010) Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy, 35(8): 3301-3306
Royan, M., Khojastehpour, M., Emadi, B., Mobtaker, H.G. (2012) Investigation of energy inputs for peach production using sensitivity analysis in Iran. Energy Conversion and Management, 64: 441-446
Safa, M., Samarasinghe, S. (2011) Determination and modelling of energy consumption in wheat production using neural networks: 'A case study in Canterbury province, New Zealand'. Energy, 36(8): 5140-5147
Sefeedpari, P., Rafiee, S., Komleh, S.H.P., Ghahderijani, M. (2012) A source-wise and operation-wise energy use analysis for corn silage production: A case study of Tehran province, Iran. International Journal of Sustainable Built Environment, 1(2): 158-166
Shahin, S., Jafari, A., Mobli, H., Rafiee, S., Karimi, M. (2008) Effect of Farm Size on Energy Ratio for Wheat Production: A Case Study from Ardabil Province of Iran. American-Eurasian Journal of Agricultural & Environmental Sciences, vol. 3 (4), pp. 604-608
Singh, G., Singh, S., Singh, J. (2004) Optimization of energy inputs for wheat crop in Punjab. Energy Conversion and Management, 45: 453-465
Singh, H., Singh, A.K., Kushwaha, H.L., Singh, A. (2007) Energy consumption pattern of wheat production in India. Energy, 32(10): 1848-1854
Tabatabaie, S.M.H., Rafiee, S., Keyhani, A. (2012) Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran. Energy, 44(1): 211-216
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/zasmat1904321S
objavljen u SCIndeksu: 25.12.2019.
Creative Commons License 4.0