Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 5 od 26  
Back povratak na rezultate
Tumačenje odnosa zagađivača i emitovanog ugljendioksida u vazduh iz industrija u Srbiji
Inonu University, Faculty of Engineering, Malatya, Turkey

e-adresabulent.tutmez@inonu.edu.tr
Ključne reči: gas staklene bašte; zagađenje vazduha; statističko učenje; regresija; važnost promenljive
Sažetak
Problem zagađenja vazduha u Srbiji fokusira se na analizu odnosa između emitovane količine CO2 u vazduh iz industrija i indikatora kvaliteta vazduha kao što su čestice (PM2,5, PM10), oksidi azota i sumpora (NOk, SOk) i isparljiva organska jedinjenja. Da bi se identifikovale zavisnosti, uzeti su u obzir i parametarski i neparametarski statistički algoritmi za evaluaciju, zasnovani na učenju. Obe strukture modela dale su zadovoljavajuće procene s visokim nivoom tačnosti. Kao rezultat interpretacije modela, PM2,5 je zabeležen kao glavni indikator za istraživanje varijabilnosti koncentracija CO2. Implementacije su pokazale da mašinsko učenje koje se može tumačiti može da obezbedi metapodatke i dovoljno informacija da sistem kvaliteta vazduha crne kutije bude objašnjiviji. Samim tim, praktikovane alate za modeliranje, predstavljene međusobne relacije, kao i nove informacije, vlada može uzeti u obzir u okviru računarske strategije upravljanja životnom sredinom.
Reference
Bal, F., Vleugel, J. (2020) Towards more environmentally sustainable intercontinental freight transport. International Journal of Transport Development and Integration, 4(2): 129-141
Bellinger, C., Jabbar, M.S.M., Zaiane, O., Osornio-Vargas, A. (2017) A systematic review of data mining and machine learning for air pollution epidemiology. BMC Public Health, 17: 907
Boehmke, B., Greenwell, B. (2020) Hands-On Machine Learning with R. Boca Raton: CRC Press
Bollen, J., Brink, C. (2014) Air pollution policy in Europe: Quantifying the interaction with greenhouse gases and climate change policies. Energy Economics, 46(C): 202-215
Brauer, M., Casadei, B., Harrington, R.A., Kovacs, R., Sliwa, K. (2021) Taking a stand against air pollution -the impact on cardiovascular disease. Global Heart, 16(1): 8
Cristescu, T., Stoica, M.E., Suditu, S. (2019) Research on the Carbon Dioxide Emission Factor as a Result of Fuel Combustion. Revista de Chimie, 70(2): 585-590
Gocheva-Ilieva, S.G., Ivanov, A.V., Livieris, I.E. (2020) High performance machine learning models of large scale air pollution data in urban area. Cybernetics and Information Technologies, 20(6): 49-60
Hastie, T., Tibshirani, R., Friedman, J. (2017) The elements of statistical learning: Data mining, inference, and prediction. New York: Springer, Second Application
Liu, H.-.L., Shen, Y.-.S. (2014) The Impact of Green Space Changes on Air Pollution and Microclimates: A Case Study of the Taipei Metropolitan Area. Sustainability, 6: 8827-8855
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., Bezirtzoglou, E. (2020) Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8: 14
Martinez-Espana, R., Bueno-Crespo, A., Timn, I., Soto, J., Munoz, A., Cecillia, J.M. (2018) Air-pollution prediction in smart cities through machine learning methods: a case of study in Murcia, Spain. Journal of Universal Computer Science, 24(3): 261-276
Melamed, M.L., Schmale, J., Schneidemesser, E. (2016) Sustainable policy-key considerations for air quality and climate change. Current Opinion in Environmental Sustainability, 23: 85-91
Ni, J.Q., Liu, S., Diehl, C.A., Lim, T.T., Bogan, B.W., Chen, L., Chai, L., Wang, K.Y., Heber, A.J. (2017) Emission factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter at two high-rise layer hen houses. Atmospheric Environment, 154: 260-273
OECD (2012) OECD Environmental Outlook to 2050. Organisation for Economic Co-operation and Development
Özmen, A. (2016) Robust optimization of spline models and complex regulatory networks. Springer
Paraschiv, S., Paraschiv, L.S. (2020) Trends of carbon dioxide (CO2) emissions from fossil fuels combustion (coal, gas and oil) in the EU member states from 1960 to 2018. Energy Reports, 6(8): 237-242
Statistical Office of the Republic of Serbia - Environment Database -SORS (2020) Air Emissions accounts by NACE Rev.2 and for households. https://data.stat.gov.rs/
Suryanarayana, T.M.V., Mistry, P.B. (2016) Principal component regression for crop yield estimation. Singapore: Springer
Tutmez, B. (2020) Air quality assessment by statistical learning-based regularization. Cukurova University Journal of the Faculty of Engineering, 35(2): 271-278
Varmuza, K., Filzmoser, P. (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press
WHO (2019) Health impact of ambient air pollution in Serbia: a call to action. Copenhagen: The WHO Regional Office for Europe
Zhang, W., Goh, A.T.C. (2016) Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geoscience Frontiers, 7: 45-52
Zhang, X., Wang, X.Y., Bai, Z.P., Han, B. (2013) Co-benefits of integrating PM10 and CO2 reduction in an electricity industry in Tianjin, China. Aerosol and Air Quality Research, 13(2): 756-770
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.5937/jemc2102115T
primljen: 09.07.2021.
prihvaćen: 10.09.2021.
objavljen u SCIndeksu: 28.12.2021.
Creative Commons License 4.0