Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:4
  • preuzimanja u poslednjih 30 dana:4

Sadržaj

članak: 1 od 29  
Back povratak na rezultate
2020, vol. 61, br. 4, str. 328-338
Otpornost prema naponskoj koroziji zavarenih cevi od niskolegiranog čelika primenom visokofrekventnog indukcionog zavarivanja
National Academy of sciences of Ukraine, E.O. Paton Electric Welding Institute, Kiev, Ukraine

e-adresalnyrkova@gmail.com
Ključne reči: niskougljenični čelik za cevi 17G1SU; zavareni spoj; neprekidno žarenje; brzina korozije; otpornost prema naponskoj koroziji; potenciometrija metoda polarizacionih krivih
Sažetak
Predstavljeni su rezultati izučavanja otpornosti prema naponskoj koroziji zavarenih spojeva od niskolegiranog čelika 17G1SU, ostvarenih primenom visokofrekventnog zavarivanja (HFW). Potenciometrijska metoda je pokazala da je zavareni spoj, u stanju po zavarivanju i nakon neprekidnog žarenja (LHT), otporan na koroziju, što je protumačeno postojanjem potencijalne razlike između vara i osnovnog materijala koja nije prelazila 30-50mV. Prema rezultatima ubrzanog koroziono-mehaničkog ispitivanja u 3%NaCl pod dejstvom istog opterećenja a pri različitim naponima, nađeno je da je brzina uniformne korozije zavarenog spoja uglavnom ista kao u osnovnom materijalu. Nešto viša brzina korozije u zavarenom spoju a nakon neprekidnog žarenja je u korelaciji sa elektrohemijskim podacima. Uopšte, zavareni spoj urađen po fabričkoj tehnologiji i bez zavarivačkih grešaka, pokazao je otpornost prema koroziji i mehaničkom razaranju u 3% rastvoru NaCl na nivou osnovnog metala. U opsegu zaštitnog polarizacionog potencijala, propisanog od strane Ukrajinskog standarda, odnos katodne zaštitne struje prema graničnoj vrednosti struji difuzije, praktično se ne razlikuju između osnovnog metala i metala vara. Pod uslovima katodne zaštite, neko značajnije lokalno strujanje između metala vara i osnovnog metala se ne očekuje.
Reference
Antipov, Y., Dmitrenko, E., Kovalenko, A., Goryanoy, S., Rybakov, A., Semenov, S., Filipchuk, T. (2009) Improving the operational reliability of gas and oil line pipes manufactured by the method of high frequency welding. Strength problems, 5, 147-153
Antipov, Y., Dmitrenko, E., Kovalenko, A., Goryanoy, S., Rybakov, A., Semenov, S., Filipchuk, T. (2014) Technology of manufacturing gas and oil line pipes by the method of high frequency welding at the JSC 'Interpipe NMPP'. Avtomaticheskaya Svarka, 3: 43-49
Beltrão, N.M.A., Castrodeza, E.M., Bastian, F.L. (2011) Fatigue crack propagation in API 5L X-70 pipeline steel longitudinal welded joints under constant and variable amplitudes. Fatigue & Fracture of Engineering Materials & Structures, 34(5): 321-328
Chukin, M. (2015) Development of the theory of metal products quality. Quality in materials processing, 1: 5-10
Fatoba, O., Akid, R. (2014) Low cycle fatigue behaviour of API 5L x65 pipeline steel at room temperature. Procedia Engineering, 74: 279-286
Fukami, T., Mizuhashi, N., Hasegawa, N., Hamatani, H., Hasegawa, Y., Asano, T., Motoyoshi, S., Miura, T., Tanaka, K., Nakaji, T., Yamamoto, K. (2012) Development of the new welding control method for HF-ERW pipes-advanced welding process of HF-ERW 1. u: Proceedings of the biennial international pipeline conference, 3, 229-236
Hamatani, H., Mizuhashi, N., Fukami, T., Karube, Y., Miura, T., Tanaka, K., Nakaji, T., Yamamoto, K., Hasegawa, Y. (2012) Development of a new optical monitoring system of welding conditions for producing HF-ERW line pipes with high weld seam toughness-advanced welding process of HF-ERW 2. u: Proceedings of the biennial international pipeline conference, 3: 237-245
Kato, C., Otoguro, Y., Kado, S., Hisamatsu, Y. (1978) Grooving corrosion in electric resistance welded steel pipe in sea water. Corrosion Science, 18(1): 61-74
Khalaj, G., Pouraliakbar, H., Jandaghi, M.R., Gholami, A. (2017) Microalloyed steel welds by HF-ERW technique: Novel PWHT cycles, microstructure evolution and mechanical properties enhancement. International Journal of Pressure Vessels and Piping, 152: 15-26
Khizhnyakov, V., Kudashkin, Y., Khizhnyakov, M., Zhilin, A. (2011) Corrosion cracking of stress-strain pipelines during oil and gas transportation. Bulletin of the Tomsk Polytechnic University, Chemistry, 3: 84-89
Kim, D., Kim, T., Park, Y.W., Sung, K., Kang, M., Kim, C., Lee, C., Rhee, S. (2007) Estimation of weld quality in high-frequency electric resistance welding with image processing. Welding Journal, March, 71s-79s
Lee, B.Y., Lee, S.Y. (2004) Studies on the microstructure and corrosion characteristics of electrical resistance welded steel. Key Engineering Materials, 270-273: 2327-2331
Luchkin, R., Vyboyschik, L. (2006) Improving homogeneity of structure and properties of welded joint of oil line pipes. u: Proceedings of the all-Russian scientific and technical conference with international participation 'Modern problems of improving the efficiency of welding production', p. 134-140
Okabe, T., Yasuda, K., Nakata, K. (2016) Dynamic observations of welding phenomena and finite element analysis in high-frequency electric resistance welding. Welding International, 30(11): 835-845
Pereira, J.C.R., de Jesus, A.M.P., Fernandes, A.A., Varelis, G. (2016) Monotonic, low-cycle fatigue, and ultralow-cycle fatigue behaviors of the X52, X60, and X65 piping steel grades. Journal of Pressure Vessel Technology, 138(3): 31403-31403
Pinheiro, B., Pasqualino, I., Cunha, S. (2014) Fatigue life assessment of damaged pipelines under cyclic internal pressure: Pipelines with longitudinal and transverse plain dents. International Journal of Fatigue, 68: 38-47
Salganik, V., Rumyantsev, M. (2007) Steel sheets production technology: Educational manual. MSTU, p.320
Simion, P., Dia, V., Istrate, B., Munteanu, C. (2014) Controlling and monitoring of welding parameters for micro-alloyed steel pipes produced by high frequency electric welding. Advanced Materials Research, 1036: 464-469
Takeuchi, Y., Hirota, S., Matsubayashi, K., Tsukakoshi, Y., Hasegawa, T., Asano, T., Motoyoshi, T., Miura, K., Tanaka, K., Yamamoto, T., Nose, O., Solonenko, A., Smirnov (2012) Development of laminar plasma shielded HF-ERw process-advanced welding process of HF-ERW 3. u: Proceedings of the biennial international pipeline conference, 3: 211-218
Taylor, C., Das, S., Collins, L., Rashid, M. (2017) Fatigue crack growth at electrical resistance welding seam of API 5L X-70 steel line pipe at varied orientations. Journal of Offshore Mechanics and Arctic Engineering, 139(3): 31401-31401
Tian, P., Xu, K., Lu, G., Qiao, G., Xiao, F. (2018) Low-cycle fatigue properties of the X70 high-frequency electric-resistant welded pipes. Advances in Materials Science and Engineering, 2018: 1-10
Tian, P., Xu, K., Lu, G., Qiao, G., Liao, B., Xiao, F. (2018) Evaluation of the mechanical properties of the X52 high frequency electric resistance welding pipes. International Journal of Pressure Vessels and Piping, 165: 59-67
Vyboishchik, L.M. (2013) Formation of structure and properties in welded joints of oil line pipes. Metal Science and Heat Treatment, 54(9-10): 535-539
Vyboyschik, L., Luchkin, R., Ioffe, A. (2010) Providing corrosion resistance of welded joints of oil pipelines at the level of weld metal. Vektor Nauki TGU, 4, 60-64
Vyboyschik, L., Sopin, N., Kolosovsky, M., Ermolchik, E., Abuzdin, A. (2020) Quality evaluation of welded joints according to the standards of structure. Accessed August 21, 2020
Wang, Z., Jing, X. (2012) Grooving corrosion of oil coiled tubes manufactured by electrical resistance welding. Cor. Sci, 57: 67-73
Zhao, J., Chen, W., Chevil, K., Been, J., Boven, G.V., Keane, S., Kania, R. (2017) Effect of pressure sampling methods on pipeline integrity analysis. Journal of Pipeline Systems Engineering and Practice, 8(4): 04017016-04017016
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.5937/zasmat2004328N
primljen: 25.09.2020.
prihvaćen: 13.10.2020.
objavljen u SCIndeksu: 05.02.2021.
Creative Commons License 4.0

Povezani članci