Metrics

  • citations in SCIndeks: 0
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:9
  • full-text downloads in 30 days:3

Contents

article: 1 from 4  
Back back to result list
2019, vol. 60, iss. 3, pp. 277-286
Corrosion investigations of P235 carbon steel in deionized water
Sveučilište u Splitu, Kemijsko-tehnološki fakultet, Split, Hrvatska

emailladislav@ktf-split.hr
Abstract
In this paper results of the corrosion behavior of steel P235 used for pipes in the water softening plant with ion exchangers were reported. Investigations were carried out in deionized water without and with the addition of commercial biocides and corrosion inhibitors, using mass loss measurement method and electrochemical methods (linear and potentiodynamic polarization method). After potentiodynamic polarization investigations, the surface of the steel was examined by optical microscopy. It has been found that general corrosion of steel occurs in deionized water. The addition of the commercial biocide (Chemtec BI01) does not alter the corrosion behavior of the steel while application of commercial inhibitor (Chemtec FI30) reduces the corrosion rate of the steel in deionized water to an acceptable value acting as an anodic type of corrosion inhibitor. However, anodic polarization on steel sample in deionized water causes the appearance of pitting corrosion, and surface damage is considerably lower in inhibited solutions.
References
Alar, V. (2015) Kemijska postojanost metala. Sveučilište u Zagrebu-Fakultet strojarstva i brodogradnje
Babolan, R. (2005) Corrosion tests and standards: Applications and interpretations. Balitmore, USA: ASTM International, second edition
Bas, S., Kramer, M., Stopar, D. (2017) Biofilm Surface Density Determines Biocide Effectiveness. Frontiers in Microbiology, 8: 2443-2443
Christophersen, D. (2010) Microbiological control strategy in cooling tower systems. Crown solution customer newsletter, 19: 1-4
Daniels, D. (2016) Monitoring and Treatment of ClosedLoop Cooling Water Systems. (https://www.powermag.com/monitoring-treatmentclosed-loop-cooling-water-systems/?pagenum=2 (03/01/2016))
Davis, J.R. (2001) Alloying unerstanding the basic. Materials Park, Ohio, USA: ASM International
Deberry, W., Kidwell, J.R., Malish, D.A. (1982) Corrosion in potable water systems: Final report. Washington D.C., USA: Environmental Protection Agency
Dugstad, A., Lunde, L., Videm, K. (1994) Parametric study of CO2 corrosion of carbon steel. in: Corrosion 94, Paper No. 99014
Esih, I., Dugi, Z. (1990) Tehnologija zaštite od korozije. Zagreb, Hrvatska: Školska knjiga
Esih, I. (2003) Osnove površinske zaštite. Zagreb: Sveučilište u Zagrebu-Fakultet strojarstva i brodogradnje
Esih, I., Stojanović, I., Šimunović, V., Alar, V. (2018) Korozija pocinčanih cijevi izloženih vodi. Zavarivanje, (1/2): 15-19
Fouda, E.A.S., El-Maksoud, A.S.A., El-Salam, A.S.A. (2017) Smanjenje korozije ugljeničnog čelika u kiseloj sredini dodatkom derivata antipirina. Zaštita materijala, vol. 58, br. 1, str. 5-15
Fouda, E.A.S., El-Khateeb, A.Y., Elbahrawi, N.M. (2017) Cupressus sempervirens extract as green inhibitor for corrosion of carbon steel in hydrochloric acid solutions. Zaštita materijala, vol. 58, br. 2, str. 131-143
Fredj, N., Burleigh, T.D., Heidersbach, K.L., Crowder, B.R. (2012) Corrosion of carbon steel in waters of varying purity and velocity. in: Corrosion 2012 Conference and Expo, Salt Lake City, Utah, USA, C2012-0001461
Ivušić, F., Lahodny-Šarc, O., Stojanović, I. (2014) Corrosion inhibition of carbon steel in saline solutions by gluconate, zinc sulphate and clay eluate. Tehnički vjesnik, 21(1): 107-114
Jia, R., Li, Y., Al-Mahamedh, H.H., Gu, T. (2017) Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. Frontiers in Microbiology, 8: 1538-1545
Joka, G. (2018) Biocidi jučer, danas, sutra. Kemija u industriji, 67(9): 470-472
Kožuh, S., Vrsalović, L., Gojić, M., Gudić, S., Kosec, B. (2016) Comparison of the corrosion behavior and surface morphology of NiTi alloy and stainless steels in sodium chloride solution. Journal of Mining and Metallurgy B: Metallurgy, vol. 52, br. 1, str. 53-61
Makhlouf, A.S.H. (2014) Handbook of smart coatings for materials protection. Cambridge, UK: Woodhead Publishing
Necib, S., Linard, Y., Crusset, D., Schlegel, M., Daumas, S., Michau, N. (2017) Corrosion processes of C-steel in long-term repository conditions. Corrosion Engineering, Science and Technology, 52(sup1): 127-130
Nesic, S., Solvi, G.T., Enerhaug, J. (1995) Comparison of the rotating cylinder and pipe flow tests for flow sensitive CO2 corrosion. Corrosion, (10): 773-787
Nunez, M. (2007) Prevention of metal corrosion. New York, USA: Nova Science Publishers Inc
Roberge, P.R. (2000) Handbook of corrosion engineering. New York, USA: McGraw-Hill
Vitez, I., Krumes, D. (2009) 6. Naučno-stručni skup s međunarodnim učešćem Kvalitet 2009, Neum, Bosna i Hercegovina, proceedings. 6: 935-940
Yin, Z.F., Feng, Y.R., Zhao, W.Z., Bai, Z.Q., Lin, G.F. (2009) Effect of temperature on CO2corrosion of carbon steel. Surface and Interface Analysis, 41(6): 517-523
 

About

article language: Croation
document type: Professional Paper
DOI: 10.5937/zasmat1903277V
published in SCIndeks: 25/12/2019
Creative Commons License 4.0

Related records

Zaštita materijala (2011)
Protection of steel by waterborne coatings
Alar Vesna, et al.

Zaštita materijala (2015)
Investigation of corrosion effect on the dynamic strength of some structural steels
Pejović Branko, et al.

Vojnotehnički glasnik (2000)
Importance of having knowledge of contact corrosion
Vujičić Vladimir

show all [27]