Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:21
  • preuzimanja u poslednjih 30 dana:18

Sadržaj

članak: 2 od 3  
Back povratak na rezultate
2018, vol. 73, br. 2, str. 181-185
Elektrohemijsko ponašanje resintetisanog katodnog materijala iz potrošenih litijum jonskih baterija u organskom elektrolitu
aInstitut za opštu i fizičku hemiju, Beograd
bUniverzitet u Beogradu, Fakultet za fizičku hemiju

e-adresajelenasencanski@gmail.com
Projekat:
Litijum-jon baterije i gorivne ćelije-istraživanje i razvoj (MPNTR - 45014)

Ključne reči: litijum jonske baterije; reciklaža litijum jonskih baterija; metoda koprecipitacije; LiNi1/3Mn1/3Co1/3O2; organski elektrolit
Sažetak
Problematika velikog broja potrošenih litijum jonskih baterija usled njihove velike upotrebe dovela je do potrebe za razvitkom procesa njihovog recikliranja, kako zbog opasnosti po životnu sredinu, tako i zbog činjenice da ove baterije mogu da zamene prirodna izvorišta ruda metala koji se u njima nalaze. U ovom radu je prikazana resinteza katodnog materijala dobijenog iz potrošenih baterija, sa ciljem njegove ponovne upotrebe. Resinteza je izvršena metodom koprecipitacije, a karakterizacija sintetisanog kompozita je urađena metodama rendgenske difrakcije (XRD) i skenirajućom elektronskom mikroskopijom (SEM), dok je određivanje hemijskog sastava urađeno plamenom atomskom apsorpcionom spektrometrijom (FAAS). Radi provere funkcionalnosti resintetisanog katodnog materijala, elektro-hemijska merenja su izvršena metodom galvanostatskog punjenja i pražnjenja u 1M rastvoru LiClO4 u propilen karbonatu. Resintetisani materijal je imao početni kapacitet od 70.6 mAh g-1 pri brzini struje od 100 mAg-1 i pad kapaciteta od 13% nakon 5 ciklusa punjenja i pražnjenja i poređen je sa materijalom koji je resintetisan metodom sagorevanja citratnog gela.
Reference
Bernardes, A., Espinosa, D., Tenório, J. (2004) Recycling of batteries: a review of current processes and technologies. Journal of Power Sources, 130(1-2): 291-298
Chen, L., Tang, X., Zhang, Y., Li, L., Zeng, Z., Zhang, Y. (2011) Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy, 108(1-2): 80-86
Dorella, G., Mansur, M.B. (2007) A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources, 170(1): 210-215
Ferreira, D.A., Prados, L.M.Z., Majuste, D., Mansur, M.B. (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources, 187(1): 238-246
Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., Rutz, M. (2012) Development of a recycling process for Li-ion batteries. Journal of Power Sources, 207: 173-182
Hanisch, C., Haselrieder, W., Kwade, A. (2011) Recovery of Active Materials from Spent Lithium-Ion Electrodes and Electrode Production Rejects. u: Hesselbach, Jürgen; Herrmann, Christoph [ur.] Glocalized Solutions for Sustainability in Manufacturing, Berlin, Heidelberg: Springer Nature, str. 85-89
He, L., Sun, S., Song, X., Yu, J. (2015) Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management, 46: 523-528
Jian-gang, L., Qian, Z., Xiang-Ming, H. (2007) Preparation of LiNi1/3Co1/3Mn1/3O2 cathode materials from spent Li-ion batteries. Transactions of Nonferrous Metals Society of China, Vol. 17, pp. 897-901
Kim, D., Sohn, J., Lee, C., Lee, J., Han, K., Lee, Y. (2004) Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries. Journal of Power Sources, 132(1-2): 145-149
Kim, J., Kim, O., Park, C., Lee, G., Shin, D. (2015) Electrochemical Properties of Li1+xCoO2 Synthesized for All-Solid-State Lithium Ion Batteries with Li2S-P2S5 Glass-Ceramics Electrolyte. Journal of the Electrochemical Society, 162(6): A1041-A1045
Kim, S., Yang, D., Sohn, J., Jung, Y. (2012) Resynthesis of LiCo1−xMnxO2 as a cathode material for lithium secondary batteries. Metals and Materials International, 18(2): 321-326
Lee, C.K., Rhee, K. (2002) Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources, 109(1): 17-21
Lee, M.-H., Kang, Y.-J., Myung, S.-T., Sun, Y.-K. (2004) Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation. Electrochimica Acta, 50(4): 939-948
Li, L., Chen, R., Zhang, X., Wu, F., Ge, J., Xie, M. (2012) Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries. Chinese Science Bulletin, 57(32): 4188-4194
Lu, M., Zhang, H., Wang, B., Zheng, X., Dai, C. (2013) The Re-Synthesis of LiCoO2 from Spent Lithium Ion Batteries Separated by Vacuum-Assisted Heat-Treating Method. International Journal of Electrochemical Science, Vol. 8, pp. 8201-8209
Luo, X., Wang, X., Liao, L., Wang, X., Gamboa, S., Sebastian, P.J. (2006) Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH. Journal of Power Sources, 161(1): 601-605
Nayaka, G.P., Pai, K.V., Santhosh, G., Manjanna, J. (2016) Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy, 161: 54-57
Nie, H., Xu, L., Song, D., Song, J., Shi, X., Wang, X., Zhang, L., Yuan, Z. (2015) LiCoO 2 : recycling from spent batteries and regeneration with solid state synthesis. Green Chemistry, 17(2): 1276-1280
Saloojee, F., Lloyd, J. (2015) Lithium battery recycling process
Sencanski, J.V., Vujkovic, M.J., Stojkovic, I.B., Majstorovic, D.M., Bajuk-Bogdanovic, D.V., Pastor, F.T., Mentus, S.V. (2017) Recycling of Lico0.59mn0.26ni0.15o2 Cathodic Material from Spent Li-Ion Batteries by the Method of the Citrate Gel Combustion. Hemijska industrija, vol. 71, br. 3, str. 211-220
Senćanski, J., Bajuk-Bogdanović, D., Majstorović, D., Tchernychova, E., Papan, J., Vujković, M. (2017) The synthesis of Li(Co Mn Ni)O 2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions. Journal of Power Sources, 342: 690-703
Shaju, K., Subba, R.G., Chowdari, B. (2002) Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochimica Acta, 48(2): 145-151
Wang, R., Lin, Y., Wu, S. (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 99(3-4): 194-201
Wang, X., Gaustad, G., Babbitt, C.W., Richa, K. (2014) Economies of scale for future lithium-ion battery recycling infrastructure. Resources, Conservation and Recycling, 83: 53-62
Weng, Y., Xu, S., Huang, G., Jiang, C. (2013) Synthesis and performance of Li[(Ni1/3Co1/3Mn1/3)1−xMgx]O2 prepared from spent lithium ion batteries. Journal of Hazardous Materials, 246-247: 163-172
Whittingham, M. S. (2004) Lithium Batteries and Cathode Materials. Chemical Reviews, 104(10): 4271-4302
Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B. (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2): 512-527
Yao, L., Yao, H., Xi, G., Feng, Y. (2016) Recycling and synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from waste lithium ion batteries using. RSC Advances, 6(22): 17947-17954
 

O članku

jezik rada: srpski
vrsta rada: izvorni naučni članak
DOI: 10.5937/tehnika1802181S
objavljen u SCIndeksu: 18.05.2018.
Creative Commons License 4.0

Povezani članci