• citations in SCIndeks: [1]
  • citations in CrossRef:0
  • citations in Google Scholar:[]
  • visits in previous 30 days:18
  • full-text downloads in 30 days:13


article: 2 from 3  
Back back to result list
2018, vol. 59, iss. 3, pp. 347-366
Recycling of cathode material from spent lithium-ion batteries
University of Belgrade, Technical Faculty, Bor
Some aspects of metal and natural mineral dissolution (MESTD - 172031)

Keywords: recycling; cathode material; hydrometallurgy
In this paper the structure and principle of the operation of Li-ion batteries is presented. A brief overview of cathodic and anodic materials development, as well as the requirements that separator and electrolyte should fulfill in order to be used in Li-ion batteries are given. Also, all the stages in the process of recycling Li-ion batteries, with the special consideration of hydrometallurgical treatment of cathode material, and the valorization of lithium and cobalt are described.
Abreu, G.M.C., Garcia, E.M., Taroco, H.A., Gorgulho, H.F., Melo, J.O.F., Silva, R.R.A., Souza, A.G. (2015) Chemical recycling of cell phone Li-ion batteries: Application in environmental remediation. Waste Management, 40: 144-150
Amine, K., Wang, Q., Vissers, D.R., Zhang, Z., Rossi, N.A.A., West, R. (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochemistry Communications, 8(3): 429-433
Aravindan, V., Gnanaraj, J., Madhavi, S., Liu, H. (2011) Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries. Chemistry - A European Journal, 17(51): 14326-14346
Arora, P., Zhang, Z.(John) (2004) Battery Separators. Chemical Reviews, 104(10): 4419-4462
Barik, S.P., Prabaharan, G., Kumar, L. (2017) Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production, 147: 37-43
Blomgren, G.E. (2017) The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society, 164(1): A5019-A5025
Brodd, R.J. (2008) Synopsis of the Lithium-Ion Battery Markets. in: Yoshio, Masaki; Brodd, Ralph J.; Kozawa, Akiya [ed.] Lithium-Ion Batteries, New York, NY: Springer Nature America, Inc, str. 1-7
Casimir, A., Zhang, H., Ogoke, O., Amine, J.C., Lu, J., Wu, G. (2016) Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy, 27: 359-376
Castillo, S. (2002) Advances in the recovering of spent lithium battery compounds. Journal of Power Sources, 112(1): 247-254
Cerpa, A., Alguacil, F.J. (2004) Separation of cobalt and nickel from acidic sulfate solutions using mixtures of di(2-ethylhexyl)phosphoric acid(DP-8R) and hydroxyoxime(ACORGA M5640). Journal of Chemical Technology & Biotechnology, 79(5): 455-460
Chagnes, A., Pospiech, B. (2013) A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries. Journal of Chemical Technology & Biotechnology, 88(7): 1191-1199
Chang, H., Chang, C., Su, C., Wu, H., Yang, M., Wu, N. (2008) Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. Journal of Power Sources, 185(1): 466-472
Chen, J., Yan, Y., Sun, T., Qi, Y., Li, X. (2014) Probing the Roles of Polymeric Separators in Lithium-Ion Battery Capacity Fade at Elevated Temperatures. Journal of The Electrochemical Society, 161(9): A1241-A1246
Chen, X., Ma, H., Luo, C., Zhou, T. (2017) Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Journal of Hazardous Materials, 326: 77-86
Chen, X., Luo, C., Zhang, J., Kong, J., Zhou, T. (2015) Sustainable Recovery of Metals from Spent Lithium-Ion Batteries: A Green Process. ACS Sustainable Chemistry & Engineering, 3(12): 3104-3113
Chen, X., Zhou, T. (2014) Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Waste Management & Research, 32(11): 1083-1093
Chen, X., Xu, B., Zhou, T., Liu, D., Hu, H., Fan, S. (2015) Separation and recovery of metal values from leaching liquor of mixed-type of spent lithium-ion batteries. Separation and Purification Technology, 144: 197-205
Cheng, C.Y. (2006) Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime. Hydrometallurgy, 84(1-2): 109-117
Chun, Y., Shin, H. (2016) Electrochemical Synthesis of Iron Phosphides as Anode Materials for Lithium Secondary Batteries. Electrochimica Acta, 209: 369-378
Contestabile, M., Panero, S., Scrosati, B. (2001) A laboratory-scale lithium-ion battery recycling process. Journal of Power Sources, 92(1-2): 65-69
Deimede, V., Elmasides, C. (2015) Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments. Energy Technology, 3(5): 453-468
Delacourt, C., Poizot, P., Levasseur, S., Masquelier, C. (2006) Size Effects on Carbon-Free LiFePO[sub 4] Powders. Electrochemical and Solid-State Letters, 9(7): A352
Deng, D. (2015) Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 3(5): 385-418
Dorella, G., Mansur, M.B. (2007) A study of the separation of cobalt from spent Li-ion battery residues. Journal of Power Sources, 170(1): 210-215
Etacheri, V., Wang, C., o'Connell Michael, J., Chan, C.K., Pol, V.G. (2015) Porous carbon sphere anodes for enhanced lithium-ion storage. Journal of Materials Chemistry A, 3(18): 9861-9868
Fan, B., Chen, X., Zhou, T., Zhang, J., Xu, B. (2016) A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Waste Management & Research, 34(5): 474-481
Ferreira, D.A., Prados, L.M.Z., Majuste, D., Mansur, M.B. (2009) Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries. Journal of Power Sources, 187(1): 238-246
Gao, W., Zhang, X., Zheng, X., Lin, X., Cao, H., Zhang, Y., Sun, Z. (2017) Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process. Environmental Science & Technology, 51(3): 1662-1669
Georgi-Maschler, T., Friedrich, B., Weyhe, R., Heegn, H., Rutz, M. (2012) Development of a recycling process for Li-ion batteries. Journal of Power Sources, 207: 173-182
Golmohammadzadeh, R., Rashchi, F., Vahidi, E. (2017) Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects. Waste Management, 64: 244-254
Gong, C., Xue, Z., Wen, S., Ye, Y., Xie, X. (2016) Advanced carbon materials/olivine LiFePO 4 composites cathode for lithium ion batteries. Journal of Power Sources, 318: 93-112
Goriparti, S., Miele, E., de Angelis, F., di Fabrizio, E., Proietti, Z.R., Capiglia, C. (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257: 421-443
Gulbinska, M.K. (2014) Lithium-ion Cell Materials in Practice. in: Gulbinska, Malgorzata K. [ed.] Lithium-ion Battery Materials and Engineering: Current Topics and Problems from the Manufacturing Perspective, London: Springer Nature America, Inc, str. 1-29
Han, H., Zhou, S., Zhang, D., Feng, S., Li, L., Liu, K., Feng, W., Nie, J., Li, H., Huang, X. (2011) Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. Journal of Power Sources, 196(7): 3623-3632
Hassoun, J., Bonaccorso, F., Agostini, M., Angelucci, M., Betti, M.G., Cingolani, R., Gemmi, M., Mariani, C., Panero, S., Pellegrini, V., Scrosati, B. (2014) An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Letters, 14(8): 4901-4906
He, L., Sun, S., Mu, Y., Song, X., Yu, J. (2017) Recovery of Lithium, Nickel, Cobalt, and Manganese from Spent Lithium-Ion Batteries Using l -Tartaric Acid as a Leachant. ACS Sustainable Chemistry & Engineering, 5(1): 714-721
He, L., Sun, S., Song, X., Yu, J. (2015) Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. Waste Management, 46: 523-528
Helen, M., Fichtner, M. (2015) Magnesium Sulphide as Anode Material for Lithium-Ion Batteries. Electrochimica Acta, 169: 180-185
Joulié, M., Laucournet, R., Billy, E. (2014) Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries. Journal of Power Sources, 247: 551-555
Kalhoff, J., Eshetu, G.G., Bresser, D., Passerini, S. (2015) Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. ChemSusChem, 8(13): 2154-2175
Kam, K.C., Doeff, M.M. (2012) Electrode materials for lithium ion batteries. Material Matters, 7 (4)
Kamali, A.R., Fray, D.J. (2011) Tin-based materials as advanced anode materials for lithium ion batteries: A Review. Reviews on Advanced Materials Science, 14-24; 27
Kang, J., Senanayake, G., Sohn, J., Shin, S.M. (2010) Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272. Hydrometallurgy, 100(3-4): 168-171
Kang, K., Ceder, G. (2006) Factors that affect Li mobility in layered lithium transition metal oxides. Physical Review B, 74(9):
Kazda, T., Vanysek, P. (2016) The Chalkboard: Lithium Batteries as Electrochemical Sources of Energy. Interface magazine, 25(3): 47-49
Kundu, D., Krumeich, F., Fotedar, R., Nesper, R. (2015) A nanocrystalline nitride as an insertion anode for Li-ion batteries. Journal of Power Sources, 278: 608-613
Kushnir, D. (2015) Lithium Ion Battery Recycling Technology 2015: Current State and Future Prospects. Göteborg: Chalmers University, Environmental Systems Analysis
Lain, M.J. (2001) Recycling of lithium ion cells and batteries. Journal of Power Sources, 97-98: 736-738
Lee, C.K., Rhee, K. (2002) Preparation of LiCoO2 from spent lithium-ion batteries. Journal of Power Sources, 109(1): 17-21
Lee, C.K., Rhee, K. (2003) Reductive leaching of cathodic active materials from lithium ion battery wastes. Hydrometallurgy, 68(1-3): 5-10
Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., Zhang, X. (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 7(12): 3857-3886
Levenspiel, O. (1999) Chemical reaction engineering. New York, itd: Wiley
Li, J., Zhao, R., He, X., Liu, H. (2009) Preparation of LiCoO2 cathode materials from spent lithium-ion batteries. Ionics, 15(1): 111-113
Li, J., Shi, P., Wang, Z., Chen, Y., Chang, C. (2009) A combined recovery process of metals in spent lithium-ion batteries. Chemosphere, 77(8): 1132-1136
Li, L., Lu, J., Ren, Y., Zhang, X.X., Chen, R.J., Wu, F., Amine, K. (2012) Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. Journal of Power Sources, 218: 21-27
Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F., Amine, K. (2015) Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries. Journal of Power Sources, 282: 544-551
Li, L., Dunn, J.B., Zhang, X.X., Gaines, L., Chen, R.J., Wu, F., Amine, K. (2013) Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. Journal of Power Sources, 233: 180-189
Li, L., Ge, J., Wu, F., Chen, R., Chen, S., Wu, B. (2010) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Journal of Hazardous Materials, 176(1-3): 288-293
Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., Amine, K. (2014) Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 262: 380-385
Li, Q., Chen, J., Fan, L., Kong, X., Lu, Y. (2016) Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment, 1(1): 18-42
Li, X., Yang, Z., Fu, Y., Qiao, L., Li, D., Yue, H., He, D. (2015) Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium-Cobalt Oxide Lithium-Ion Battery. ACS Nano, 9(2): 1858-1867
Lin, Y., Lin, Y., Zhou, T., Zhao, G., Huang, Y., Huang, Z. (2013) Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles. Journal of Power Sources, 226: 20-26
Liu, K., Zhang, F. (2016) Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water. Journal of Hazardous Materials, 316: 19-25
Lu, M., Zhang, H., Wang, B., Zheng, X., Dai, C. (2013) The Re-Synthesis of LiCoO2 from Spent Lithium Ion Batteries Separated by Vacuum-Assisted HeatTreating Method. International Journal of Electrochemical Science, 8201-8209; 8
Manthiram, A. (2017) An Outlook on Lithium Ion Battery Technology. ACS Central Science, 3(10): 1063-1069
Mantuano, D.P., Dorella, G., Elias, R.C.A., Mansur, M.B. (2006) Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with Cyanex 272. Journal of Power Sources, 159(2): 1510-1518
Meng, Q., Zhang, Y., Dong, P. (2017) Use of glucose as reductant to recover Co from spent lithium ions batteries. Waste Management, 64: 214-218
Meshram, P., Abhilash,, Pandey, B.D., Mankhand, T.R., Deveci, H. (2016) Comparision of Different Reductants in Leaching of Spent Lithium Ion Batteries. JOM, 68(10): 2613-2623
Meshram, P., Abhilash,, Pandey, B.D., Mankhand, T.R., Deveci, H. (2016) Acid baking of spent lithium ion batteries for selective recovery of major metals: A two-step process. Journal of Industrial and Engineering Chemistry, 43: 117-126
Meshram, P., Pandey, B.D., Mankhand, T.R. (2014) Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review. Hydrometallurgy, 150: 192-208
Meshram, P., Pandey, B.D., Mankhand, T.R. (2015) Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching. Chemical Engineering Journal, 281: 418-427
Miyachi, M., Yamamoto, H., Kawai, H., Ohta, T., Shirakata, M. (2005) Analysis of SiO Anodes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 152(10): A2089
Molenda, J. (2017) Electronic structure 'engineering’ in the development of materials for Li-ion and Na-ion batteries. Advances in Natural Sciences: Nanoscience and Nanotechnology, 8(1): 015007
Myoung, J., Jung, Y., Lee, J., Tak, Y. (2002) Cobalt oxide preparation from waste LiCoO2 by electrochemical-hydrothermal method. Journal of Power Sources, 112(2): 639-642
Nakajima, T., Dan, K., Koh, M., Ino, T., Shimizu, T. (2001) Effect of addition of fluoroethers to organic solvents for lithium ion secondary batteries. Journal of Fluorine Chemistry, 111(2): 167-174
Nan, J., Han, D., Zuo, X. (2005) Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. Journal of Power Sources, 152: 278-284
Nan, J., Han, D., Yang, M., Cui, M., Hou, X. (2006) Recovery of metal values from a mixture of spent lithium-ion batteries and nickel-metal hydride batteries. Hydrometallurgy, 84(1-2): 75-80
Nayaka, G.P., Pai, K.V., Santhosh, G., Manjanna, J. (2016) Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co. Hydrometallurgy, 161: 54-57
Nayl, A.A., Elkhashab, R.A., Badawy, S.M., El-Khateeb, M.A. (2017) Acid leaching of mixed spent Li-ion batteries. Arabian Journal of Chemistry, 10: S3632-S3639
Nazemi, M.K., Rashchi, F., Mostoufi, N. (2011) A new approach for identifying the rate controlling step applied to the leaching of nickel from spent catalyst. International Journal of Mineral Processing, 100(1-2): 21-26
Ni, J., Zhao, Y., Chen, J., Gao, L., Lu, L. (2014) Site-dependent electrochemical performance of Mg doped LiFePO4. Electrochemistry Communications, 44: 4-7
Nitta, N., Wu, F., Lee, J.T., Yushin, G. (2015) Li-ion battery materials: present and future. Materials Today, 18(5): 252-264
Novikova, S.A., Yaroslavtsev, A.B. (2017) Cathode materials based on olivine lithium iron phosphares for lithium-ion batteries. Reviews on Advanced Materials Science, 129-139; 49
Ogumi, Z., Wang, H. (2009) Carbon anode materials. in: Lithium-Ion Batteries, New York: Springer Science, 49-73
Ordoñez, J., Gago, E.J., Girard, A. (2016) Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renewable and Sustainable Energy Reviews, 60: 195-205
Pacović, N.V. (1980) Hidrometalurgija. Bor: Javno preduzeće 'Štampa, radio i film' / ŠRIF
Palacín, M. (2009) Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews, 38(9): 2565
Pan, F., Wang, W. (2012) Synthesis and characterization of core-shell F-doped LiFePO4/C composite for lithium-ion batteries. Journal of Solid State Electrochemistry, 16(4): 1423-1427
Park, Y., Lim, H., Moon, J., Lee, H., Son, S., Kim, H., Kim, H. (2017) High-Yield One-Pot Recovery and Characterization of Nanostructured Cobalt Oxalate from Spent Lithium-Ion Batteries and Successive Re-Synthesis of LiCoO2. Metals, 7(8): 303
Peng, Y., Lo, C. (2015) Electrospun porous carbon nanofibers as lithium ion battery anodes. Journal of Solid State Electrochemistry, 19(11): 3401-3410
Pistoia, G. (2009) Portable devices: Batteries. in: Encyclopedia of Electrochemical Power Sources, Amsterdam: Elsevier Science, 29-38
Rao, M.C. (2012) Microfabrication of LiCoO2 thin film cell. International Journal of Chemical Sciences, 10 (2); 1111-1116
Santana, I.L., Moreira, T.F.M., Lelis, M.F.F., Freitas, M.B.J.G. (2017) Photocatalytic properties of Co3O4/LiCoO2 recycled from spent lithium-ion batteries using citric acid as leaching agent. Materials Chemistry and Physics, 190: 38-44
Sencanski, J.V., Vujkovic, M.J., Stojkovic, I.B., Majstorovic, D.M., Bajuk-Bogdanovic, D.V., Pastor, F.T., Mentus, S.V. (2017) Recycling of Lico0.59mn0.26ni0.15o2 Cathodic Material from Spent Li-Ion Batteries by the Method of the Citrate Gel Combustion. Hemijska industrija, vol. 71, br. 3, str. 211-220
Senćanski, J., Bajuk-Bogdanović, D., Majstorović, D., Tchernychova, E., Papan, J., Vujković, M. (2017) The synthesis of Li(Co Mn Ni)O2 cathode material from spent-Li ion batteries and the proof of its functionality in aqueous lithium and sodium electrolytic solutions. Journal of Power Sources, 342: 690-703
Shin, S.M., Kim, N.H., Sohn, J.S., Yang, D.H., Kim, Y.H. (2005) Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy, 79(3-4): 172-181
Shuva, M.A.H., Kurny, A.S.W. (2013) Hydrometallurgical Recovery of Value Metals from Spent Lithium Ion Batteries. American Journal of Materials Engineering and Technology, 1 (1); 8-12
Shuva, M.A.H., Kurny, A.S.W. (2013) Dissolution Kinetics of Cathode of Spent Lithium Ion Battery in Hydrochloric Acid Solutions. Journal of The Institution of Engineers (India): Series D, 94(1): 13-16
Suzuki, T., Nakamura, T., Inoue, Y., Niinae, M., Shibata, J. (2012) A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media. Separation and Purification Technology, 98: 396-401
Swain, B., Jeong, J., Lee, J., Lee, G., Sohn, J. (2007) Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. Journal of Power Sources, 167(2): 536-544
Szekely, J., Evans, J.W., Sohn, H.Y. (1976) Gas Solid Reactions. New York: Academic Press
Takacova, Z., Havlik, T., Kukurugya, F., Orac, D. (2016) Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach. Hydrometallurgy, 163: 9-17
Talens, P.L., Villalba, M.G., Ayres, R.U. (2013) Lithium: Sources, Production, Uses, and Recovery Outlook. JOM, 65(8): 986-996
Tang, K., Yu, X., Sun, J., Li, H., Huang, X. (2011) Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 56(13): 4869-4875
Tong, D., Lai, Q., Ji, X. (2005) Recycling of LiCoO2 cathode materials from spent lithium ion batteries. Journal of Chemical Industry and Engineering (CHINA), 1967-1970; 56
Wang, C., Hong, J. (2007) Ionic/Electronic Conducting Characteristics of LiFePO[sub 4] Cathode Materials. Electrochemical and Solid-State Letters, 10(3): A65
Wang, F., Sun, R., Xu, J., Chen, Z., Kang, M. (2016) Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction. RSC Advances, 6(88): 85303-85311
Wang, F., He, F., Zhao, J., Sui, N., Xu, L., Liu, H. (2012) Extraction and separation of cobalt(II), copper(II) and manganese(II) by Cyanex272, PC-88A and their mixtures. Separation and Purification Technology, 93: 8-14
Wang, M., Zhang, C., Zhang, F. (2016) An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Waste Management, 51: 239-244
Wang, R., Lin, Y., Wu, S. (2009) A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 99(3-4): 194-201
Wang, X., Yasukawa, E., Kasuya, S. (2001) Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: II. The Use of an Amorphous Carbon Anode. Journal of The Electrochemical Society, 148(10): A1066
Whittingham, M. (2004) Lithium Batteries and Cathode Materials. Chemical Reviews, 104(10): 4271-4302
Wrodnigg, G.H. (1999) Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes. Journal of The Electrochemical Society, 146(2): 470
Xu, J., Dou, S., Liu, H., Dai, L. (2013) Cathode materials for next generation lithium ion batteries. Nano Energy, 2(4): 439-442
Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J., Liang, B. (2008) A review of processes and technologies for the recycling of lithium-ion secondary batteries. Journal of Power Sources, 177(2): 512-527
Xu, K. (2004) Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 104(10): 4303-4418
Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., Zhang, J. (2014) Lithium metal anodes for rechargeable batteries. Energy Environ. Sci., 7(2): 513-537
Yang, Y.Q., Wang, C.Y., Li, D.F., Yin, F., Chen, Y.Q., Jie, X.W. (2011) Study on the Leaching of LiCoO2 in Low H2SO4 Concentration Solutions. Advanced Materials Research, 201-203: 1752-1756
Yang, Y., Huang, G., Xu, S., He, Y., Liu, X. (2016) Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries. Hydrometallurgy, 165: 390-396
Yao, L., Yao, H., Xi, G., Feng, Y. (2016) Recycling and synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from waste lithium ion batteries using. RSC Advances, 6(22): 17947-17954
Yoon, S., Lee, S., Kim, S., Park, K., Cho, D., Jeong, Y. (2015) Carbon nanotube film anodes for flexible lithium ion batteries. Journal of Power Sources, 279: 495-501
Yu, F., Lim, S.H., Zhen, Y., An, Y., Lin, J. (2014) Optimized electrochemical performance of three-dimensional porous LiFePO 4 /C microspheres via microwave irradiation assisted synthesis. Journal of Power Sources, 271: 223-230
Yu, L., Shu, B., Yao, S. (2015) Recycling of Cobalt by Liquid Leaching from Waste 18650-Type Lithium-Ion Batteries. Advances in Chemical Engineering and Science, 05(04): 425-429
Yu, W., Ou, G., Qi, L., Wu, H. (2016) Textured LiFePO 4 Bulk with Enhanced Electrical Conductivity. Journal of the American Ceramic Society, 99(10): 3214-3216
Yu, Y., Chen, B., Huang, K., Wang, X., Wang, D. (2014) Environmental Impact Assessment and End-of-Life Treatment Policy Analysis for Li-Ion Batteries and Ni-MH Batteries. International Journal of Environmental Research and Public Health, 11(3): 3185-3198
Zeng, X., Li, J., Singh, N. (2014) Recycling of Spent Lithium-Ion Battery: A Critical Review. Critical Reviews in Environmental Science and Technology, 44(10): 1129-1165
Zeng, X., Li, J., Shen, B. (2015) Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. Journal of Hazardous Materials, 295: 112-118
Zhan, Z.J., Ramadass, P. (2009) Lithium-ion battery separators. in: Lithium-Ion Batteries, New York: Springer Science, 367-412
Zhang, J., Yu, A. (2015) Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Science Bulletin, 60(9): 823-838
Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T.M., Inoue, K. (1998) Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy, 47(2-3): 259-271
Zhang, X., Cao, H., Xie, Y., Ning, P., An, H., You, H., Nawaz, F. (2015) A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Separation and Purification Technology, 150: 186-195
Zhang, X., Xie, Y., Lin, X., Li, H., Cao, H. (2013) An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries. Journal of Material Cycles and Waste Management, 15(4): 420-430
Zheng, Y., Long, H.L., Zhou, L., Wu, Z.S., Zhou, X., You, L., Yang, Y., Liu, J.W. (2016) Leaching Procedure and Kinetic Studies of Cobalt in Cathode Materials from Spent Lithium Ion Batteries Using Organic Citric Acid as Leachant. International Journal of Environmental Research, 10(1); 159-168
Zhu, S., HE, W., LI, G., Zhou, X., Zhang, X., Huang, J. (2012) Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Transactions of Nonferrous Metals Society of China, 22(9): 2274-2281


article language: Serbian
document type: Review Paper
DOI: 10.5937/zasmat1803347M
published in SCIndeks: 06/09/2018
Creative Commons License 4.0