Akcije

Teaching of Mathematics
kako citirati ovaj članak
podeli ovaj članak

Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:2
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 4 od 4  
Back povratak na rezultate
2007, vol. 10, br. 1, str. 11-36
Didactical analysis of primary geometric concepts II
(naslov ne postoji na srpskom)
Srpska akademija nauke i umetnosti (SANU), Matematički institut, Beograd

e-adresamilomar@beotel.yu
Ključne reči: intuitive geometry; levels of inherent and visual geometry; principle of creation of geometric ideas; point; line segment; ray; straight line
Sažetak
(ne postoji na srpskom)
Surveyed in historical perspective, the contents of school geometry can be sorted into the following three stages: intuitive, pre-Euclidean and Euclidean. Geometric topics usually found in primary school programs constitute the first stage of intuitive geometry. Although this geometry is related to the perception of the surrounding real world, both the coherence and order in its exposition are equally important. This paper is devoted to that didactical task. At this first stage, pairings of the real world appearances (objects and their collections) with geometric models (iconic signs and their configurations) make the main learning procedures. These pairings are interactive, meaning that the appearances "reanimate" the models and the latter serve to the intelligible conceiving of the former. In order to discriminate between the two sides of this process of pairing, we consider two levels of intuitive geometry. When conveyors of geometric meaning are real world appearances, we speak of inherent geometry and when such conveyors are con- figurations of iconic signs, we speak of visual geometry. These latter signs (called here ideographs) express the meaning of geometric concepts and their deliberate use leads to the assimilation of this meaning. Following Poincare’s views on genesis of geometric ideas, we formulate a cognitive principle stating that perception of solids in the outer space, in the way when all their physical properties are abstracted (ignored), leads to the creation of these ideas. In addition, an intelligent ignoring of extension leads, then to the creation of concepts: point, line and surface. In the final didactical analysis, a series of basic geometrical concepts will be discussed (and this paper includes: point, line, segment, ray and straight line). ZDM Subject Classification: G22; AMS Subject Classification: 00A35.
Reference
Barabash, M. Synthetic Euclidean geometry as a didactic basis for primary and secondary school geometry. http://www.icme-organizers.dk/dg06/, str. 1-12
Barrantes, M., Blanco, L.J. (2006) A study of prospective primary teachers' conceptions of teaching and learning school geometry. Journal of Mathematics Teacher Education, 9, str. 411-436
Bkouche, R. (2003) La geometrie dans le premiere annees de la revue L'Enseignement Mathematique. u: Coray D., Furtinghetti F., Gispert H., Hodgson B.R. and Schubring G. [ur.] One Hundred Years of L'Enseignement Mathematique, Geneve: L'Enseigment Mathematique, str. 96-112
Freudenthal, H. (1978) Weeding and sowing. Dordrecht, itd: Reidel Publishing
Freudenthal, H. (1983) Didactical phenomenology of mathematical structures. Dordrecht, itd: Reidel Publishing
Freudenthal, H. (1973) Mathematics as an educational task. Dordrecht, itd: Reidel Publishing
Howson, G. (2003) Geometry: 1950-1970. u: Coray D., Furtinghetti F., Gispert H., Hodgson B.R. and Schubring G. [ur.] One hundred years of L'Enseignement Mathematique, Geneve: L'Enseigment Mathematique, str. 113-131
Jones, K., Mooney, C. Making space for geometry in primary mathematics. u: Thompson I. [ur.] Enhancing primary mathematics teaching, London: Open University Press, str. 3-15
Kuzniak, A., Rauscher, J.C. On the geometrical thinking of pre-service school teachers. u: Bosch Marianna [ur.] Congress of the European Society for Research in Mathematics Education (Fourth)
Laborde, C. (2003) Geometrie-periode 2000 et apres. u: Coray D., Furtinghetti F., Gispert H., Hodgson B.R. and Schubring G. [ur.] One hundred years of L'Enseignement Mathematique, Geneve: L'Enseigment Mathematique, str. 133-154
Marjanović, M.M. (2001) Games of equating. Beograd: Zavod za udžbenike, (in Serbian)
Marjanović, M.M., Kadijević, Đ. (2001) Identification games in early mathematical education. EduMath, 12, 26-34
Marjanović, M.M. (2001) Metric Euclidean projective and topological properties. Teaching of Mathematics, vol. 4, br. 1, str. 41-70
Poincare, H. (1927) La Science et l'Hypothèse. Paris: Ernest Flammarion
Rouche, N. (2003) Reaction. u: Coray D., Furtinghetti F., Gispert H., Hodgson B.R. and Schubring G. [ur.] One hundred years of L'Enseignement Mathematique, Geneve: L'Enseigment Mathematique, str. 156-159
Thom, R. (1974) Modèles mathématiques de la morphogènes. u: Collection dirigée par Christian Bourgois, Union general d'editions
van Hiele, P.M. (1985) Structure and insight: A theory of mathematics education. New York: Academic Press, Inc
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
objavljen u SCIndeksu: 03.12.2007.

Povezani članci

Teaching of Mathematics (2000)
A broader way through themes of elementary school mathematics, III
Marjanović Milosav M.

Teaching of Mathematics (2003)
Didactical analysis-a plan for consideration
Marjanović Milosav M.

Teaching of Mathematics (2007)
Developing a proof-writing tool for novice lyceum geometry students
Dimakos G., i dr.

prikaži sve [13]