Metrika

  • citati u SCIndeksu: [1]
  • citati u CrossRef-u:[1]
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:5
  • preuzimanja u poslednjih 30 dana:1

Sadržaj

članak: 1 od 2  
Back povratak na rezultate
2018, vol. 59, br. 1, str. 92-99
Formiranje i rast pitova na austenitnom nerđajućem čeliku X5CrNi18-10 u prisustvu hlorida i sulfata
aUniverzitet u Beogradu, Institut za hemiju, tehnologiju i metalurgiju - IHTM
bUniverzitet u Beogradu, Mašinski fakultet, Inovacioni centar
cMetalurški Institut, 'Kemal Kapetanović', Zenica, Bosna i Hercegovina

e-adresaborejegdic@yahoo.com
Projekat:
Istraživanje i optimizacija tehnoloških i funkcionalnih performansi ventilacionog mlina termoelektrane Kostolac B (MPNTR - 34028)
Razvoj tehnologije izrade obloge i jezgra na bazi domaćih sirovina za proizvodnju specijalnih obloženih elektroda namenjenih za elektrolučno zavarivanje čelika (MPNTR - 34016)

Sažetak
Primenom potenciodinamičke metode ispitana je otpornost nerđajućeg čelika X5CrNi18-10 na piting koroziju, u rastvoru koji sadrži hloride i sulfate. Dobijeni rezultati pokazuju da je nerđajući čelik u značajnoj meri otporan prema formiranju pitova, ali postoji sklonost prema rastu pitova i koroziji u zazorima. Pitovi formirani na korozionom potencijalu nastavljaju stabilno da rastu. Izvršena je statistička analiza rezultata dobijenih pri ispitivanju piting korozije. Pokazano je da će se sa verovatnoćom od 95 % vrednosti pokazatelja otpornosti nerđajućeg čelika prema formiranju pitova (potencijal pitinga Epit, potencijal metastabilnog pitinga Empit i razlika Epit-Ekor) nalaziti u granicama od nekoliko procenata. Vrednosti pokazatelja otpornosti nerđajućeg čelika prema rastu pitova (količina naelektrisanja potrebna za rast pitova q, zaštitni potencijal Eprot i razlika Epit-Eprot) će se nalaziti u širim granicama. Pored navedenog, analiziran je izgled pitova na površini nerđajućeg čelika, kao i izgled dna pitova. Pokazano je da struktura ispitivanog nerđajućeg čelika nije senzibilizovana prema piting i interkristalnoj koroziji, odnosno da nerđajući čelik nije bio prethodno termički tretiran.
Reference
*** Standard test method for conducting cyclic potentiodynamic polarization measurements for localized corrosion susceptibility of Iron-, Nickel-, or Cobalt-Based Alloys - ASTM G61
*** Standard Guide for Applying Statistics to Analysis of Corrosion Data - ASTM G16
*** Standard Guide for Examination and Evaluation of Pitting Corrosion - ASTM G46
*** Methods of accelerated tests for resistance to pitting corrosion: GOST 9.912
*** Method of measuring the pitting potential for stainless steels by potentiodynamic control in sodium chloride solution: ISO 15158
*** Standard test method for conducting cyclic potentiodynamic polarization measurements to determine the corrosion susceptibility of small implant devices - ASTM F2129
*** Electrochemical potentiokinetic reactivation measurement using the double loop method (based on Čihal’s method): ISO 12732
Bethencourt, M., Botana, F.J., Calvino, J.J., Marcos, M. (1998) Lanthanide compounds as environmentally-friendly corrosion inhibitors of aluminium alloys: a review. Corrosion Science, 40(11): 1803-1819
Chiba, A., Muto, I., Sugawara, Y., Hara, N. (2013) Pit Initiation Mechanism at MnS Inclusions in Stainless Steel: Synergistic Effect of Elemental Sulfur and Chloride Ions. Journal of the Electrochemical Society, 160(10): C511-C520
Corlett, N., Eiselstein, L.E., Budiansky, N. (2010) Crevice Corrosion. u: Shreir's Corrosion, Elsevier BV, str. 753-771
Frenkel, G.S. (1998) Pitting corrosion of metals: A review of the critical factors. J Electrochem. Soc, vol. 145, br. 6, June str. 2186-2198
Galvele, J.R. (1976) Transport Processes and the Mechanism of Pitting of Metals. Journal of The Electrochemical Society, 123(4): 464
Ida, N., Muto, I., Sugawara, Y., Hara, N. (2017) Local Electrochemistry and In Situ Microscopy of Pitting at Sensitized Grain Boundary of Type 304 Stainless Steel in NaCl Solution. Journal of The Electrochemical Society, 164(13): C779-C787
Jegdic, B., Bobic, B., Bosnjakov, M., Alic, B. (2017) Testing of Intergranular and Pitting Corrosion in Sensitized Welded Joints of Austenitic Stainless Steel. Metallurgical and Materials Engineering (Ranije: Metalurgija - MJoM), vol. 23, br. 2, str. 109-117
Jegdić, B., Bobić, B., Nedeljković, D., Alić, B. (2017) Uticaj jačine struje zavarivanja na otpornost prema piting koroziji zavarenog spoja nerđajućeg čelika X5CrNi18-10. Zaštita materijala, vol. 58, br. 3, str. 297-303
Jones, B.P. (2003) Statistics for the corrosionist. u: Corrosion: Fundamentals, testing, and protection, Vol 13A: ASM Handbook, ASM International, 972-979
Ke, R. (1995) Initiation of Corrosion Pits at Inclusions on 304 Stainless Steel. Journal of The Electrochemical Society, 142(12): 4056
Laycock, P.J. (1990) Extrapolation of Extreme Pit Depths in Space and Time. Journal of The Electrochemical Society, 137(1): 64
Laycock, P.J., Scarf, P.A. (1993) Exceedances, extremes, extrapolation and order statistics for pits, pitting and other localized corrosion phenomena. Corrosion Science, 35(1-4): 135-145
Mikhailov, A.S., Wu, B., Scully, J.R., Hudson, J.L. (1997) Cooperative stochastic behavior in localized corrosion II. experiment. J Electrochem Soc, 144, 1620-1629
Seys, A.A., Brabers, M.J., van Haute, A.A. (1974) Analysis of the Influence of Hydrogen on Pitting Corrosion and Stress Corrosion of Austenitic Stainless Steel in Chloride Environment. Corrosion, 30(2): 47-52
Soltis, J. (2015) Passivity breakdown, pit initiation and propagation of pits in metallic materials - Review. Corrosion Science, 90: 5-22
Stansbury, E.E., Buchanan, R.A. (2004) Fundamentals of electrochemical corrosion. Ohio: ASM International, Materials Park
Suzuki, T., Yamabe, M., Kitamura, Y. (1973) Composition of Anolyte Within Pit Anode of Austenitic Stainless Steels in Chloride Solution. Corrosion, 29(1): 18-22
Tang, Y., Zuo, Y., Wang, J., Zhao, X., Niu, B., Lin, B. (2014) The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corrosion Science, 80: 111-119
Wilde, B.E., Williams, E. (1971) The use of current/voltage curves for the study of localized corrosion and passivity breakdown on stainless steels in chloride media. Electrochimica Acta, 16(11): 1971-1985
Wilde, B.E., Williams, E. (1971) The Relevance of Accelerated Electrochemical Pitting Tests to the Long-Term Pitting and Crevice Corrosion Behavior of Stainless Steels in Marine Environments. Journal of The Electrochemical Society, 118(7): 1057
Williams, D.E. (1985) Stochastic Models of Pitting Corrosion of Stainless Steels. Journal of The Electrochemical Society, 132(8): 1804