Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:11
  • preuzimanja u poslednjih 30 dana:10

Sadržaj

članak: 1 od 3  
Back povratak na rezultate
2020, vol. 70, br. 1, str. 36-46
Hibridni mokronamotani materijali - zatezne karakteristike kompozita (aramidno vlakno/stakleno vlakno)-epoksi smola i kompozita (ugljenično vlakno/stakleno vlakno)-epoksi smola
Vojnotehnički institut - VTI, Beograd

e-adresajovan.r.radulovic@gmail.com
Ključne reči: hibridni kompoziti; stakleno vlakno; aramidno vlakno; ugljenično vlakno; sistem epoksi smole; NOL prstenovi; zatezna čvrstoća; gustina; specifična zatezna čvrstoća; tehnologija mokrog namotavanja
Sažetak
U ovom radu prikazane su zatezne karakteristike mokronamotanog hibridnog kompozita stakleno vlakno-aramidno vlakno/epoksi smola i hibridnog kompozita stakleno vlakno-dva ugljenična vlakna/epoksi smola. Osnovni pojmovi o hibridnim kompozitnim materijalima (poreklo, razlozi izrade, prednosti, definicije, nivoi hibridizacije, načini klasifikacije, tipovi, kategorizacija, moguće interakcije između konstituenata) i korišćenim ojačivačima i matricama su opisani. Za izradu NOL prstenova korišćena su četiri ojačivača (stakleno vlakno, aromatsko poliamidno vlakno i dva ugljenična vlakna) i dve matrice (epoksi sistem visoke i umerene temperature očvršćavanja). Na osnovu eksperimentalno dobijenih rezultata zaključeno je da hibridni kompozitni materijal koji se sastoji od ugljeničnog vlakna T800 (67 zapreminskih %) i staklenog vlakna GR600 (33 zapreminskih %) impregnisanih sistemom epoksi smole L20 ima najveću vrednosti i zatezne čvrstoće i specifične zatezne čvrstoće. Dve najniže vrednosti i zatezne čvrstoće i specifične zatezne čvrstoće imaju hibridni kompozitni materijal koji sadrži aramidno vlakno K49 (33 zapreminskih %) i stakleno vlakno GR600 (67 zapreminskih %) impregnisanih sistemom epoksi smole 0164 i hibridni NOL prsten namotan sa ugljeničnim vlaknom T300 (33 zapreminskih %) i staklenim vlaknom GR600 (67 zapreminskih %) impregnisanih istim sistemom epoksi smole. Ova istraživanja su istakla da povećanje zapreminskog sadržaja aramidnog vlakna K49, ugljeničnog vlakna T300 i ugljeničnog vlakna T800 u odgovarajućim hibridnim kompozitima sa staklenim vlaknom GR600 povećava vrednosti i zatezne čvrstoće i specifične zatezne čvrstoće i smanjuje vrednosti gustine, bez obzira na korišćen sistem epoksi smole.
Reference
Ashby, M.F., Bréchet, Y.J.M. (2003) Designing hybrid materials. Acta Materialia, 51(19): 5801-5821
ASTM International (2016) Standard test method for apparent hoop tensile strength of plastic or reinforced plastic pipe. West Conshohocken, PA, ASTM D2290-16
Gómez-Romero, P., Sanchez, C. (2004) Functional hybrid materials. Wiley-VCH Verlag GmbH & Co, pp. 1-6
Groover, M.P. (2010) Fundamentals of modern manufacturing, materials, processes and systems. Hoboken: John Wiley and Sons Inc, ISBN 978-0470-467008
Harris, B. (1979) Engineering Composite Materials. London: Institute of Materials
Institute for Standardization of Serbia (2013) Immersion method, liquid pyknometer method and titration method. u: SRPS EN ISO 1183-1: Plastics: Methods for determining the density of non-cellular plastics, Belgrade, Part 1
Irina, M.M.W., Azmi, A.I., Tan, C.L., Lee, C.C., Khalil, A.N.M. (2015) Evaluation of mechanical properties of hybrid fiber reinforced polymer composites and their architecture. u: 2nd International Materials, Industrial, and Manufacturing Engineering Conference: MIMEC2015, 4-6 February, Bali, Indonesia
Jawaid, M., Thariq, M., Saba, N., eds Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. u: Series in Composites Science and Engineering, Woodhead Publishing, Copyright © 2019 Elsevier Ltd., ISBN: 978-0-08-102292-4
Jawaid, M., Tariq, M., Saba, N., eds (2019) Durability and life prediction in biocomposites, fiber-reinforced composites and hybrid composites. u: Series in composites science and engineering, Woodhead Publishing, ISBN 978-0-08-102290-0
Kelly, A. (1988) Concise encyclopedia of composite materials. Oxford: Pergamon Press, ISBN 0-08-034718-9
Makisima, A. (2004) Possibility of hybrids materials. Ceramic Japan, 39, pp. 90-91
Miska, K.H. (1978) Hybridizing expands properties, cut costs of advanced composites. Materials Engineering, No. 8, pp. 35-37
Mundra, R.R. Hybrid materials. https://prezi.com/svsgpadl_hvu/hybrid-composite-materials
Nguyen, H., Zatar, W., Mutsuyoshi, H. (2017) Mechanical properties of hybrid polymer composite. u: Hybrid polymer composite materials: Properties and characterization, Elsevier Ltd, pp. 83-113
Niizeki, N. (1986) What are Hybrid Materials?. Sensor Tech, 6 [2], pp. 42-44
Özbek, Ö. (2019) Determination of mechanical behaviors of filament wound hybrid composite pipes. Republic of Turkey: Gaziantep University - Graduate School of Natural & Applied Sciences, Thesis, September
Perov, B.V., Khoroshilova, I.P. (1995) Hybrid composite materials. u: Shalin R.E. [ur.] Soviet Advanced Composites Technology Series (SACTS): Polymer matrix composites, book series, volume 4: pp. 269-304, © Chapman & Hall 1995
Radulović, J. (2013) Thin wall and thick wall filament wound polymeric composite tubes: Mechanical characteristics caused by internal hydraulic pressure. Scientific Technical Review, Belgrade, vol. 63, br. 1, str. 63-69
Radulović, J. (2010) Influence of internal cyclic pressure on filament-wound composite tubes quality. Scientific Technical Review, Belgrade, vol. 60, br. 1, str. 54-60
Radulović, J., Karkalić, R. (2019) Filament wound filter housing: Key for rational purification process of highly corrosive solutions. Scientific Technical Review, vol. 69, br. 1, str. 45-52
Radulović, J., Čitaković, S. (2016) Mechanical characteristics of joints between glass fiber reinforced composite tubes and steel cylinder obtained by different fastening elements. Scientific Technical Review, vol. 66, br. 2, str. 28-35
Radulović, J. (2011) Filament wound composite plastic tubes: Relationship between winding structures and their hydraulic and mechanical properties. Scientific Technical Review, Belgrade, vol. 61, br. 3-4, str. 73-77
Raghavalu, T.D.P., Løgstrup, A.T., Markussen, C.M., Madsen, B., Lilholt, H. (2013) Tensile and compression properties of hybrid composites: A comparative study. u: Proceedings of the 19th International Conference on Composite Materials: ICCM19, Canadian Association for Composite Structures and Materials, pp. 1029-1035
Richardson, T. (1987) Composites: A design guide. New York: Industrial Press Inc
Rosato, D.V., Rosato, M.G., Rosato, D.V. (2000) Concise encyclopedia of plastics. Norwell: Springer US - Kluwer Academic Publishers, ISBN 0-7923-8496-2
Rosato, D.V., Rosato, D.V. (2004) Reinforced plastics handbook. Oxford: Elsevier Advanced Technology Ltd, ISBN 1 8561 74506
Summerscales, J. Hybrid composites. https://www.slideserve.com/nevin/hybrid-composites
Tariq, M., Nisar, S., Shah, A., Sohaib, A., Khan, M.A., Khan, S.Z. (2018) Effect of hybrid reinforcement on the performance of filament wound hollow shaft. Composite Structures, 184: 378-387
Yamada, A., Sasabe, H., Osada, Y., Shiroda, Y., Yamamoto, I. (1989) Concepts of hybrid materials. u: Hybrid materials: Concept and case studies, Ohio: ASM International
Zhang, J., Chaisombat, K., He, S., Wang, C.H. (2012) Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials & Design (1980-2015), 36: 75-80
Zuraida, A., Khalid, A.A., Ismail, A.F. (2007) Performance of hybrid filament wound composite tubes subjected to quasi static indentation. Materials & Design, 28(1): 71-77
 

O članku

jezik rada: engleski
vrsta rada: neklasifikovan
DOI: 10.5937/str2001036R
primljen: 09.09.2020.
prihvaćen: 06.11.2020.
objavljen u SCIndeksu: 06.04.2021.
Creative Commons License 4.0