Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:7
  • preuzimanja u poslednjih 30 dana:2

Sadržaj

članak: 1 od 28  
Back povratak na rezultate
2023, vol. 38, br. 1, str. 11-21
Da li je moguće efikasno suzbijanje Sclerotinia sclerotiorum bez narušavanja mikrobiološke ravnoteže u zemljištu?
aInstitut za pesticide i zaštitu životne sredine, Beograd, Srbija
bUniverzitet u Novom Sadu, Poljoprivredni fakultet, Srbija

e-adresamilica.mihajlovic@pesting.org.rs
Projekat:
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije (institucija: Institut za pesticide i zaštitu životne sredine, Beograd) (MPNTR - 451-03-68/2020-14/200214)

Ključne reči: zemljišni patogeni; fungicidi; biološko suzbijanje; antagonističko delovanje; procena rizika za zemljište
Sažetak
Sclerotinia sclerotiorum je kosmopolitski, polifagni patogen, koji parazitira preko 400 biljnih vrsta. U radu je ispitana osetljivost izolata S. sclerotiorum na nekoliko komercijalnih fungicida i biofungicida u laboratorijskim i uslovima in vivo. Najviša efikasnost je zabeležena u tretmanu boskalidom (98%) i fluopiramom (80%), a najniža u varijanti sa biološkim preparatom na bazi antagonističke bakterije B. subtilis (5%). U uslovima in vitro, izolat S. sclerotiorum je ispoljio osetljivost na sve testirane fungicide. Fluopiram (EC50=0.003 mg/l) je bio najtoksičniji za odabrani izolat, od svih preparata korišćenih u istraživanju, dok je kaptan (EC50=8.94mg/l) ispoljio najnižu toksičnost među sintetičkim fungicidima. U tretmanima u kojima su primenjivani biološki preparati na bazi ulja čajnog drveta i B. subtilis zabeleženo je najslabije dejstvo na patogena in vitro. Još jedan od aspekata koji je proučavan u radu, bio je uticaj odabranih fungicida i biofungicida na životnu sredinu. Modelovanje očekivanih koncentracija u zemljištu (PEC soil), uz literaturne podatke o toksičnosti, korišćeni su u proceni rizika od pesticida za organizme u zemljištu. Visok dugotrajan rizik za kišne gliste utvrđen je kod izloženosti kaptanu i tiofanat-metilu. Na osnovu rezultata efikasnosti i procene rizika utvrđeno je da fluopiram ima najbolja svojstva od svih ispitivanih konvencionalnih pesticida, dok su kod biopesticida na bazi ulja čajnog drveta utvrđena bolja svojstva u odnosu na preparat koji sadrži sporogenu bakteriju B. subtilis. Dalja ispitivanja efekata kombinovane primene konvencionalnih preparata i biopesticida daće smernice za efikasnije suzbijanje S. sclerotiorum, uz smanjenje negativnih efekata na životnu sredinu i neciljne organizme.
Reference
Abbott, W.S. (1925) A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18(2): 265-267
Arora, S., Sahni, D. (2016) Pesticides effect on soil microbial ecology and enzyme activity: An overview. Journal of Applied and Natural Science, 8(2): 1126-1132
Bart, S., Pelosi, C., Barraud, A., Péry, A.R.R., Cheviron, N., Grondin, V., Mougin, C., Crouzet, O. (2019) Earthworms Mitigate Pesticide Effects on Soil Microbial Activities. Frontiers in Microbiology, 10: 1535
Benelli, G., Pavela, R., Maggi, F., Nkuimi, W.J.G., Yvette, F.N.G.B., Koné, B.D.B.Y., Sagratini, G., Vittori, S., Caprioli, G. (2019) Insecticidal activity of the essential oil and polar extracts from Ocimum gratissimum grown in Ivory Coast: Efficacy on insect pests and vectors and impact on non-target species. Industrial Crops and Products, 132: 377-385
Benelli, G., Pavela, R., Petrelli, R., Cappellacci, L., Canale, A., Senthil, N.S., Maggi, F. (2018) Not just popular spices: Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Industrial Crops and Products, 124: 236-243
Benigni, M., Bompeix, G. (2010) Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture. Pest Management Science, 66(12): 1332-1336
Boland, G.J., Hall, R. (1994) Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16(2): 93-108
Bounatirou, S., Smiti, S., Miguel, M.G., Faleiro, L., Rejeb, M.N., Neffati, M., Costa, M., Figueiredo, A., Barroso, J., Pedro, L.G. (2007) Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1): 146-155
Bradley, C.A., Lamey, H.A., Endres, G.J., Henson, R.A., Hanson, B.K., Mckay, K.R., Halvorson, M., Legare, D.G., Porter, P.M. (2006) Efficacy of Fungicides for Control of Sclerotinia Stem Rot of Canola. Plant Disease, 90(9): 1129-1134
Broadbent, P., Baker, K.F., Franks, N., Holland, J. (1977) Effect of Bacillus spp. on Increased Growth of Seedlings in Steamed and in Nontreated Soil. Phytopathology, 77(8): 1027-1034
Budge, S.P., Whipps, J.M. (2001) Potential for Integrated Control of Sclerotinia sclerotiorum in Glasshouse Lettuce Using Coniothyrium minitans and Reduced Fungicide Application. Phytopathology, 91(2): 221-227
Carson, C.F., Hammer, K.A., Riley, T.V. (2006) Melaleuca alternifolia (Tea Tree) Oil: A Review of Antimicrobial and Other Medicinal Properties. Clinical Microbiology Reviews, 19(1): 50-62
Coley, S.J.R., Cooke, R.C. (1971) Survival and Germination of Fungal Sclerotia. Annual Review of Phytopathology, 9(1): 65-92
D'ercole, N., Nipoti, P., di Pillo, L., Gavina, F. (2000) In vitro and in vivo tests of Trichoderma spp. as a biocontrol agent of Verticillium dahliae Kleb. in eggplants. u: Tjamos E. C.; Rowe R. C.; Heale J. B.; Fravel D. R. [ur.] Advances in Verticillium research and disease management, St. Paul, MN, USA: APS Press, 260-263
Dhingra, O.D., Sinclair, J.B. (1995) Basic plant pathology methods. Boca Raton, FL, USA: CRC Press
Edris, A.E., Farrag, E.S. (2003) Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung/Food, 47(2): 117-121
EFSA (2010) Conclusion on the peer review of the pesticide risk assessment of the active substance dazomet. EFSA Journal, 8(10): 1833
EFSA (2012) Conclusion on the peer review of the pesticide risk assessment of the active substance extract from tea tree. EFSA Journal, 10(2): 2542
EPPO (1997) Soil fungi attacking ornamental plants: PP 1/40(2). u: EPPO Standards: Guidelines for the efficacy evaluation of plant protection products, Paris, France: OEPP/EPPO, pp 62-66
Finney, D.J. (1971) Probit analysis: A statistical treatment of the sigmoid response curve. Cambridge, UK: Cambridge University Press, 3 rd ed
Fliebbach, A., Mäder, P. (2004) Shortand long-term effects on soil microorganisms of two potato pesticide spraying sequences with either glufosinate or dinoseb as defoliants. Biology and Fertility of Soils, 40(4): 268-276
Hu, S., Zhang, J., Zhang, Y., He, S., Zhu, F. (2018) Baseline sensitivity and toxic actions of boscalid against Sclerotinia sclerotiorum. Crop Protection, 110: 83-90
Huang, X.P.P., Luo, J., Li, B.X.X., Song, Y.F.F., Mu, W., Liu, F. (2019) Bioactivity, physiological characteristics and efficacy of the SDHI fungicide pydiflumetofen against Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 160: 70-78
Joshi, D., Kumar, S., Kumar, M. (2021) Changes in soil microbial population dynamics in response to application of selected pesticides under a sugarcane agro-ecosystem. Journal of Eco-friendly Agriculture, 16(2), 28
Kalemba, D.A.A.K., Kunicka, A. (2003) Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10): 813-829
Kedia, A., Prakash, B., Mishra, P.K., Singh, P., Dubey, N.K. (2015) Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae): A review. Journal of Food Science and Technology, 52(3): 1239-1257
Kim, P.I., Chung, K.C. (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiology Letters, 234(1): 177-183
Knobloch, K., Pauli, A., Iberl, B., Weigand, H., Weis, N. (1989) Antibacterial and Antifungal Properties of Essential Oil Components. Journal of Essential Oil Research, 1(3): 119-128
Leroux, P., Gredt, M. (1972) Etude de l'action invitro des fongicides, methode de l'incorporation ou milieu. Laboratorie de Phytopharmacie-INRA, Versailles, France, pp 1-10
Liu, S., Fu, L., Hai, F., Jiang, J., Che, Z., Tian, Y., Chen, G. (2018) Sensitivity to boscalid in field isolates of Sclerotinia sclerotiorum from rapeseed in Henan Province, China. Journal of Phytopathology, 166(4): 227-232
Löcher, F.J., Lorenz, G. (1991) Methods for monitoring the sensitivity of Botrytis cinerea to dicarboximide fungicides. EPPO Bulletin, 21(2): 341-354
Markham, L.J. (1999) Biological activity of tea tree oil. u: Southwell I.; Lowe R. [ur.] Tea tree: The genus Melaleuca, Amsterdam, the Netherlands: Harwood Academic Publisher, pp 169-190
Martı'nez, T.M.V., Salmerón, V., Rodelas, B., Pozo, C., González, L.J. (1998) Effects of the fungicide Captan on some functional groups of soil microflora. Applied Soil Ecology, 7(3): 245-255
Matheron, M.E., Porchas, M. (2004) Activity of Boscalid, Fenhexamid, Fluazinam, Fludioxonil, and Vinclozolin on Growth of Sclerotinia minor and S. sclerotiorum and Development of Lettuce Drop. Plant Disease, 88(6): 665-668
Matsson, M., Hederstedt, L. (2001) The carboxin-binding site on Paracoccus denitrificans succinate: Quinone reductase identified by mutations. Journal of Bioenergetics and Biomembrane, 33(2): 99-105
Meghana, D., Ramanamma, P., Rangaswamy, V., Jaffer, M.G. (2017) Influence of novaluron and thiophanate methyl on microbial population in Groundnut (Arachis hypogaea. L) Soils. IJAR, 3(4): 566-571
Meynell, G.G., Meynell, E., Mekler, L.B., Kriviskij, A.S., Urbah, V.J. (1967) Experimental microbiology. Moscow, USSR: Mir, In Russian
Mihajlović, M., Rekanović, E., Hrustić, J., Grahovac, M., Stevanović, M., Tanović, B. (2020) Effects of fungicides and biofungicides on Rhizoctonia solani, a pathogen of pepper. Pesticides and Phytomedicine, 35(2), 97-104
Mueller, D.S., Dorrance, A.E., Derksen, R.C., Ozkan, E., Kurle, J.E., Grau, C.R., Gaska, J.M., Hartman, G.L., Bradley, C.A., Pedersen, W.L. (2002) Efficacy of Fungicides on Sclerotinia sclerotiorum and Their Potential for Control of Sclerotinia Stem Rot on Soybean. Plant Disease, 86(1): 26-31
Pavela, R., Benelli, G., Pavoni, L., Bonacucina, G., Cespi, M., Cianfaglione, K., Bajalan, I., Morshedloo, M.R., Lupidi, G., Romano, D., Canale, A., Maggi, F. (2019) Microemulsions for delivery of Apiaceae essential oils: Towards highly effective and eco-friendly mosquito larvicides?. Industrial Crops and Products, 129: 631-640
Pavela, R., Morshedloo, M.R., Mumivand, H., Khorsand, G.J., Karami, A., Maggi, F., Desneux, N., Benelli, G. (2020) Phenolic monoterpene-rich essential oils from Apiaceae and Lamiaceae species: Insecticidal activity and safety evaluation on non-target earthworms. Entomologia Generalis, 40(4): 421-435
Purdy, L.H. (1979) Sclerotinia sclerotiorum: History, Diseases and Symptomatology, Host Range, Geographic Distribution, and Impact. Phytopathology, 69(8): 875-880
Raveau, R., Fontaine, J., Lounès, H.S.A. (2020) Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 9(3): 365
Sánchez, B.F. (2011) Impacts of Agricultural Pesticides on Terrestrial Ecosystems. u: Sánchez Bayo F.; van den Brink P. J.; Mann R. M. [ur.] Ecological Impacts of Toxic Chemicals, USA: Bentham Science Publishers, 63-87
Santísima, T.A.B.L., Del, M.M.R.M., Diéz, R.M.Á., Pascual, J.A., Ros, M. (2018) Impact of foliar fungicides on target and non-target soil microbial communities in cucumber crops. Ecotoxicology and Environmental Safety, 166: 78-85
Singh, M., Sharma, O.P., Bhagat, S. (2014) Compability of promising Trichoderma spp. with pesticides. Pesticide Research Journal, 26(2): 217-220
Soylu, S., Yigitbas, H., Soylu, E.M., Kurt, Ş. (2007) Antifungal effects of essential oils from oregano and fennel on Sclerotinia sclerotiorum. Journal of Applied Microbiology, 103(4): 1021-1030
Swiader, M., Pronczuk, M., Niemirowicz, S.K. (2002) Resistance of Polish lines and hybrids of watermelon [Citrullus lanatus (Thunb.) Matsum et Nakai] to Fusarium oxysporum at the seedling stage. J Appl Genet, 43(2): 161-170
Tanović, B., Hrustić, J., Mihajlović, M., Grahovac, M., Stevanović, M., Gašić, S. (2020) Effects of developed thyme and oregano essential oil formulations on Monilinia laxa and Monilinia fructicola. Pesticides and Phytomedicine, 35(1), 49-56
Tejada, M., Gómez, I., García, M.A.M., Osta, P., Parrado, J. (2011) Effects of Prochloraz fungicide on soil enzymatic activities and bacterial communities. Ecotoxicology and Environmental Safety, 74(6): 1708-1714
United Nations Environment Programme UNEP Ozone Secretariat (2006) Handbook for the Montreal protocol on substances that deplete the ozone layer. UNEP/Earthprint, 3 th Edition
Waterhouse, G.M., Waterston, J.M. (1966) Phytophthora cactorum. u: Descriptions of pathogenic fungi and bacteria, Wallingford, UK: CAB International, No. 111
White, T.J., Bruns, T., Lee, S.J.W.T., Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications, 18(1), 315-322
Xiong, D., Li, Y., Xiong, Y., Li, X., Xiao, Y., Qin, Z., Xiao, Y. (2014) Influence of boscalid on the activities of soil enzymes and soil respiration. European Journal of Soil Biology, 61(4): 1-5
Yang, D., Wang, B., Wang, J., Chen, Y., Zhou, M. (2009) Activity and efficacy of Bacillus subtilis strain NJ-18 against rice sheath blight and Sclerotinia stem rot of rape. Biological Control, 51(1): 61-65
Zhang, Y., Xu, J., Dong, F., Liu, X., Wu, X., Zheng, Y. (2014) Response of microbial community to a new fungicide fluopyram in the silty-loam agricultural soil. Ecotoxicology and Environmental Safety, 108: 273-280
Žabka, M., Pavela, R., Kovaříková, K., Tříska, J., Vrchotová, N., Bednář, J. (2021) Antifungal and Insecticidal Potential of the Essential Oil from Ocimum sanctum L. against Dangerous Fungal and Insect Species and Its Safety for Non-Target Useful Soil Species Eisenia fetida (Savigny, 1826). Plants, 10(10): 2180
 

O članku

jezik rada: engleski
vrsta rada: izvorni naučni članak
DOI: 10.2298/PIF2301011M
primljen: 05.12.2022.
prihvaćen: 13.01.2023.
objavljen u SCIndeksu: 20.05.2023.
metod recenzije: dvostruko anoniman
Creative Commons License 4.0

Povezani članci

Nema povezanih članaka