Metrika

  • citati u SCIndeksu: 0
  • citati u CrossRef-u:0
  • citati u Google Scholaru:[]
  • posete u poslednjih 30 dana:0
  • preuzimanja u poslednjih 30 dana:0

Sadržaj

članak: 1 od 3  
Back povratak na rezultate
2010, vol. 64, br. 5, str. 365-374
CFD simulacija suspenzije čvrstih čestica u reaktoru sa mešalicom
aDepartment of Chemical Engineering, Vaal University of Technology, Vanderbijlpark, South Africa
bDepartment of Chemical and Metallurgical Engineering, Tshwane University of Technology, Pretoria, South Africa
Ključne reči: CFD; mešanje; višefazni tokovi; simulacija; čvrsta suspenzija
Sažetak
Predmet višegodišnjih istraživanja su mnogobrojne hemijsko reakcije koje se izvode korišćenjem reaktora sa mešalicom, pri čemu efikasnost ovih sistema zavisi od karakteristika mešanja. Za mešanje čvrsto-tečno, korišćenjem eksperimentalnih tehnika napori istraživača su obično usmereni ka određivanju osobina mešanja, kao što su čvrste suspenzije iznad dna. U nekoliko istraživanja koja su se bavila određivanjem raspodele koncentracije čvrste suspenzije, neke korišćene metode nisu dovoljno tačne za objašnjenje nekih 'zloćudnih' pojava kao što je postojanje mrtvih područja (dead zone). U ovom preglednom radu prikazana je primena Proračunske dinamike fluida (engl. computational fluid dynamic, CFD) za simulaciju osobina mešanja, kao što su čvrste suspenzije iznad dna, koncentracija čvrste materije, raspodela veličine čestica i visina 'oblaka'. Podaci o dejstvu veličine čestica i raspodele veličine čestica na raspodelu koncentracije čvrste materije su još uvek oskudni. Napredak CFD modelovanja je usmeren ka sprezanju fizičkih i kinetičkih podataka radi razumevanja mešanja i reakcije na mezo- i mikro-skali. Raspodela vremena zadržavanja čvrste materije je važna za projektovanje. Ipak, postojeći CFD modeli ne predviđaju ovaj parametar. Poslednjih godina, postignuti su izvesni pomaci u primeni CFD simulacije na sisteme koji uključuju fermentaciju i anaerobne procese. U ovim sistemima, složeno uzajamno dejstvo između biohemijskih procesa i hidrodinamike još je nedovoljno jasno. Ova je jedna od oblasti koja zahteva dalja istraživanja.
Reference
*** (2003) CFX5 flow solver user guide, CFD services. Oxfordshire: AEA Industrial Tech
Antal, S.P., Lahey, J.R.T., Flaherty, J.E. (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. International Journal of Multiphase Flow, 17(5): 635
Armenante, P.M., Nagamine, E.U. (1998) Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks. Chemical Engineering Science, 53(9): 1757
Aubin, J., Fletcher, D.F., Xuereb, C. (2004) Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Experimental Thermal and Fluid Science, 28(5): 431
Barresi, A., Baldi, G. (1987) Solids suspension in an agitated vessel. Chemical Engineering Science, 42(12): 2949
Barrué, H., Karoui, A., le Sauze, N., Costes, J., Illy, F. (2001) Comparison of Aerodynamics and mixing mechanisms of three mixers: Oxynator™ gas-gas mixer, KMA, SMI static mixers. Chemical Engineering Journal, 84(3): 343
Biswas, P.K., Dev, S.C., Godiwalla, K.M., Sivaramakrishnan, C.S. (1999) Effect of some design parameters on the suspension characteristics of a mechanically agitated sand-water slurry. Mat. Des, 20(5), 253-265
Bittorf, K.J., Kresta, S.M. (2003) Prediction of cloud height for solid suspensions in stirred tanks. Chemical Engineering Research and Design, 81(A5), 568-577
Brucato, A., Grisafi, F., Montante, G. (1998) Particle drag coefficients in turbulent fluids. Chemical Engineering Science, 53(18): 3295
Brucato, A., Ciofalo, M., Grisafi, F., Micale, G. (1998) Numerical prediction of flow fields in baffled stirred vessels: A comparison of alternative modelling approaches. Chemical Engineering Science, 53(21): 3653
Bujalski, W., Takenmaka, K., Paolini, S., Jahoda, M., Paghanti, A., Takahashi, K., Nienow, A., Etchells, A.W. (1999) Suspension, homogenization in high solids concentration
Derksen, J.J. (2003) Numerical simulation of solids suspension in a stirred tank. AIChe J., 49(11) 2700-2714
Duduković, M.P. (2010) Reaction engineering: Status and future challenges. Chemical Engineering Science, 65(1): 3
Fajner, D., Pinelli, D., Ghadge, R.S., Montante, G., Paglianti, A., Magelli, F. (2008) Solids distribution and rising velocity of buoyant solid particles in a vessel stirred with multiple impellers. Chemical Engineering Science, 63(24): 5876
Fajner, D., Magelli, F., Nocentini, M., Pasquali, G. (1985) Solids concentration profiles in a mechanically stirred and staged column slurry reactor. Chemical Engineering Research and Design, 63(4), 235-40
Gidaspow, D. (1994) Multiphase flow, fluidization: Continuum, kinematic theory description. New York: Academic Press
Gosman, A.D., Lekakou, C., Politisis, S., Issa, R.I., Looney, M.K. (1992) Multidimensional modeling of turbulent 2-phase flow in stirred vessels. AIChE Journal, 38(12): 1946
Guha, D., Ramachandran, P.A., Dudukovic, M.P. (2007) Flow field of suspended solids in a stirred tank reactor by Lagrangian tracking. Chemical Engineering Science, 62(22): 6143
Hartmann, H., Derksen, J.J., Montavon, C., Pearson, J., Hamill, I.S., van den Akker, H.E.A. (2004) Assessment of large eddy and RANS stirred tank simulations by means of LDA. Chemical Engineering Science, 59(12): 2419
Ishii, M., Zuber, N. (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE J., 25, str. 843-855
Jian-Ye, X., Yong-Hong, W., Si-Liang, Z., Chen, N., Yin, P., Ying-Ping, Z., Chu, J. (2009) Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochemical Engineering Journal, 43(3): 252
Kasat, G.R., Khopkar, A.R., Ranade, V.V., Pandit, A.B. (2008) CFD simulation of liquid-phase mixing in solid-liquid stirred reactor. Chem. Eng. Sci, 6(15) 3877-3885
Kee, C.S., Tan, B.H.R. (2000) CFD simulation of solids suspension in mixing vessels. Can. J. Chem. Eng, 80, 21-26
Koh, P.T.L., Manickam, M., Scharz, M.P. (2000) CFD simulation of bubble-particle collision in floatation cells. Min. Eng, 13(14-15), 1455-1463
Kuzmanić, B., Ljubičić, N. (2001) Suspension of floating solids with up-pumping pitched blade impellers: Mixing time, power characteristics. Chemical Engineering Journal, 84(3): 325
Lahey, R.T. J., Drew, D.A. (2001) The analysis of two-phase flow and heat transfer using a multidimensional, four field, two-fluid model. Nuclear Engineering and Design, 204(1-3): 29
Lane, G.L., Schwarz, M.P., Evans, G.M. (2005) Numerical modeling of gas-liquid flow in stirred tanks. Chem. Eng. Sci, 60(8-9) 2203-2214
Launder, B.E., Spalding, D.B. (1974) The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, pp. 269 -289
Lo, H., Karema, S. (1999) Efficiency of inter-phase coupling algorithms in fluidized bed conditions. Computers & Fluids, 28(3): 323
Lopez, de B.M.A. (1998) Two fluid model for two-phase turbulent jets. Nuclear Engineering and Design, 179(1): 65
Ljungqvist, M., Rasmuson, A. (2001) Numerical simulation of the two phase flow in an axial stirred vessel. Trans. Inst Chem. Eng, 789A: 533-546
Ma, Y., Zhang, Z., Xu, L., Liu, X., Wu, Y. (2001) Application of electrical resistance tomography system to monitor gas-liquid two phase flow in a horizontal pipe. Flow Measurement and Instrumentation, 12(4): 259
Magelli, F., Fajner, D., Nocentini, M., Pasquali, G. (1990) Solid distribution in vessels stirred with multiple impellers. Chemical Engineering Science, 45(3): 615
McKee, S.L., Williams, R.A., Boxman, A. (1995) Development of solid-liquid mixing models using tomographic techniques. Chemical Engineering Journal, 56(3), 101-7
Meroney, R.N., Colorado, P.E. (2009) CFD simulation of mechanical draft tube mixing in anaerobic digester tanks. Water research, 43(4): 1040-50
Mersmann, A., Werner, F., Maurer, S., Bartosch, K. (1998) Theoretical prediction of the minimum stirrer speed in mechanically agitated suspensions. Chemical Engineering and Processing, 37(6): 503
Montante, G., Pinelli, D., Magelli, F. (2003) Scale up criteria for the solids distribution in a slurry reactor stirred with multiple impellers. Chemical Engineering Science, 58(23-24): 5363
Montante, G., Lee, K., Brucato, C.A., Yianneskis, M. (2001) Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels. Chemical Engineering Science, 56(12): 3751
Montante, G., Micale, G., Magelli, F., Brucato, A. (2001) Experimental and CFD prediction of solid particle distribution in vessel agitated with four pitched blade turbines. Trans. Inst Chem. Eng, 79A, 1005-1010
Murugesan, T. (2001) Critical impeller speed for solids suspension in mechanically agitated contactors. Journal of chemical engineering of japan, 34(3): 423
Nagata, S. (1975) Mixing-principles and applications. John Wiley & Sons
Nere, N.K., Patwardhan, A.W., Joshi, J.B. (2001) Prediction of Flow Pattern in Stirred Tanks: New Constitutive Equation for Eddy Viscosity. Industrial & Engineering Chemistry Research, 40(7), 1755-1772
Nienow, A.W. (1968) Suspension of solid particles in turbine agitated baffled vessels. Chemical Engineering Science, 23(12): 1453
Ochieng, A., Lewis, A.E. (2006) CFD simulation of solids off- -bottom suspension and cloud height. Hydrometallurgy, 82(1-2): 1
Ochieng, A., Lewis, A.E. (2006) CFD simulation of nickel solids concentration distribution in a stirred tank. Minerals Engineering, 19(2): 180
Ochieng, A., Onyango, S.M. (2008) Drag models and solids concentration distribution in a stirred tank. Powder Technology, 181(1): 1
Ochieng, A. (2005) A hydrodynamic study of nickel suspension in stirred tanks. Univ. of Cape Town, PhD Thesis
Ochieng, A., Onyango, M.S., Kiriamiti, H.K. (2009) Experimental measurement and CFD simulation of mixing in a stirred tank: A review. S. A. J. Sci. Tech, 105, 421-426
Oldshue, J.Y. (1983) Fluid mixing technology. New York: McGraw-Hill
Pinelli, D., Magelli, F. (2001) Solids distribution in slurry reactors with dilute pseudoplastic suspensions. Industrial & Engineering Chemistry Research, 40(20): 4456
Rielly, D.C., Marquis, A.J. (2001) A particle eye view of crystallizer fluid mechanics. Chemical Engineering Science, 56(7): 2475
Rousseaux, J.M., Vial, C., Muhr, H., Plasari, E. (2001) CFD simulation of precipitation in the sliding-surface mixing device. Chemical Engineering Science, 56(4): 1677
Sahu, A.K., Kumar, P., Joshi, J.B. (1998) Simulation of flow in stirred vessel with axial flow impeller: Zonal modeling, optimisation of parameters. Industrial & Engineering Chemistry Research, 37(6): 2116
Sato, Y., Sekoguchi, K. (1975) Liquid velocity distribution in two-phase bubble flow. International Journal of Multiphase Flow, 2(1): 79
Sha, Z., Oinas, P., Louhi-Kultanen, M., Yang, G., Palosaari, S. (2001) Application of CFD simulation to suspension crystallization- factors affecting size-dependent classification. Powder Technology, 121(1): 20
Sha, Z., Palosaari, S., Oinas, P., Ogawa, K. (2001) CFD simulation of solid suspension in a stirred tank. Journal of chemical engineering of japan, 34(5): 621
Sharma, R.N., Shaikh, A.A. (2003) Solids suspension in stirred tanks with pitched blade turbines. Chemical Engineering Science, 58(10): 2123
Tamburini, A., Cipollina, A., Micale, G., Ciofalo, M., Brucato, A. (2009) Dense solid-liquid off-bottom suspension dynamics: Simulation and experiment. Chemical Engineering Research and Design, 87(4): 587
Tatterson, G.B. (1991) Fluid mixing and gas dispersion in agitated tanks. New York: McGraw-Hill
ten Cate, A., Denksen, J.J., Kramer, H.J.M., van Rosemalen, G.M., van den Akker, H.E.A. (2001) Microscopic modelling of hydrodynamics in industrial crystallizers. Chemical Engineering Science, 56(7): 2495
Terashima, M., Goel, R., Komatsu, K., Yasui, H., Takahashi, H., Li, Y.Y., Noike, T. (2009) CFD simulation of mixing in anaerobic digesters. Bioresource Technology, 100(7): 2228
van Wachem, B.G.M., van Almstedt, A.E. (2003) Methods of multiphase computational fluid dynamics. Chemical Engineering Journal, 96(1-3): 81
Versteeg, N.K., Malasekera, W. (1995) An Introduction to computational fluid dynamics: The finite volume method. Upper Sadle River: Prentice Hall
Wei, H., Wei, Z., Garside, J. (2001) Computational fluid dynamics modeling of precipitation process in a semibatch crystallizer. Industrial & Engineering Chemistry Research, 40(23): 5255
Wilcox, D.C. (2000) Turbulence modeling for CFD. La Canada, California: DCW Industries, str. 314
Wu, J., Pullum, L. (2001) Impeller geometry effects on velocity and solid suspension. Trans. Inst Chem. Eng, 79A 989-997
Yeoh, S.L., Papadakis, G., Yianneskis, M. (2005) Determination of mixing time, degree of homogeneity in stirred vessels with large eddy simulation. Chem. Eng. Sci, 60(8-9), 2293-2302
Yoon, H.S., Sharp, K.V., Hill, D.F., Adrian, R.J., Balachpartar, S., Ha, M.Y., Kar, K. (2001) Integrated experimental, computational approach to simulation of flow in a stirred tank. Chemical Engineering Science, 56(23): 6635
Zwietering, T.N.H. (1958) Suspending of solids particle in liquid by agitators. Chemical Engineering Science, 8(3-4): 244
 

O članku

jezik rada: engleski
vrsta rada: naučni članak
DOI: 10.2298/HEMIND100714051O
objavljen u SCIndeksu: 30.11.2010.